用于形成金属间隙填充物的方法与流程

专利检索2022-05-10  38


用于形成金属间隙填充物的方法
1.背景
2.领域
3.本公开内容的多个实施方式一般涉及基板的处理,且尤其涉及用于形成金属间隙填充物的方法。
4.相关技术说明
5.在半导体处理中,正在制造具有不断减小的特征尺寸的装置。随着装置尺寸不断缩小,且莫耳定律的二维尺寸限制无法克服,制造商转向三维结构以推进未来的成长。例如鳍式场效晶体管(finfets)的装置和例如动态随机存取存储器(dram)装置的三维存储器装置通常以堆叠中的不同材料的层为特征。多个装置或单元可彼此堆叠在另一个上面,且数个装置通常形成在一个基板上。这些层常常是不同的材料,所以一个结构可含有绝缘的、半导体的和金属的层的交替层,例如sio2、sin、a

si和聚合si。通常,这种堆叠由32或64或甚至128层的这些交替层组成。
6.例如钨这样的某些金属已经在逻辑应用中被用在触点级(contact level)约二十年。在近期先进的互补金属氧化物半导体(cmos)装置中,已出现例如金属栅极和finfet这样的新技术,而导致这些金属作为用于p型金属氧化物半导体(pmos)和n型金属氧化物半导体(nmos)装置二者的金属栅极填充物的新应用。在3d nand装置中,这些金属也被用于金属栅极填充物。用于间隙填充物的要求(例如使用钨)由于几个原因而变得越来越具挑战性。例如,对于触点,随着触点的尺寸越来越小且因为钨的共形(conformal)填充物通常会留下缝隙(seam),悬垂(overhang)变得更具挑战性。另外,在化学机械抛光(cmp)期间缝隙将被暴露给浆料(slurry),这将造成整合(integration)问题。此外,对于先进的cmos和3d nand两者中的金属栅极沟槽,传统的钨共形生长不可避免地在中间留下缝隙。
7.因此,对于在先进的逻辑和存储装置中的触点和金属栅极填充物两者,需要一种形成金属间隙填充物的改良的方法。


技术实现要素:

8.本公开内容的多个实施方式一般涉及用于基板的处理的方法,且尤其涉及用于形成金属间隙填充物的方法。在一个实施方式中,一种用于形成金属间隙填充物的方法包括:在第二层中形成的开口中,在第一层的表面之上形成金属间隙填充物的第一部分;在第一部分上实行溅射处理;和形成金属间隙填充物的第二部分,以用金属间隙填充物来填充开口。
9.在另一个实施方式中,一种用于形成金属间隙填充物的方法包括:在第二层中形成的开口中,在第一层的表面之上形成金属间隙填充物的第一部分;在第二层的一个或多个侧壁上形成一个或多个层;且形成金属间隙填充物的第二部分,以用金属间隙填充物来填充开口。
10.在另一个实施方式中,一种处理系统包括:传送腔室;多个处理腔室,耦接至传送腔室;和控制器,构造成引发要在处理系统中实行的处理,该处理包括:在第二层中形成的
开口中,在第一层的表面之上形成金属间隙填充物的第一部分;在第一部分上实行溅射处理;和形成金属间隙填充物的第二部分,以用金属间隙填充物来填充开口。
附图说明
11.为了能详细理解本公开内容的上述特征,可参照多个实施方式来得到以上简要概述的本公开内容的更具体的说明,一些实施方式绘示在附图中。然而,需要注意,附图仅绘示本公开内容的多个示例性实施方式,而非用作本公开内容范围上的限制,本公开内容可容许其他多个等效实施方式。
12.图1是根据一个实施方式的用于形成金属间隙填充物的方法的流程图。
13.图2a

图2f示出根据一个实施方式的图1的方法的不同阶段期间的基板的各种视图。
14.图3是根据一个实施方式的适合用于实行图1的方法的示例性多腔室处理系统的示意性俯视图。
15.为了便于理解,已尽可能地使用相同的附图标记标识这些图中共有的相同元件。需理解一个实施方式的多个元件和特征可在无进一步详述的情况下,有利地并入其他多个实施方式中。
具体实施方式
16.本公开内容一般涉及用于基板的处理的方法,且尤其涉及用于形成金属间隙填充物的方法。在能包括或与本文所述的一个或多个实施方式结合的一个实施方式中,这种方法包括使用多步骤处理在开口中形成金属间隙填充物。多步骤处理包括:通过选择性沉积处理使金属间隙填充物的第一部分生长,实行溅射处理以在一个或多个侧壁上形成一个或多个层,和通过选择性沉积处理使金属间隙填充物的第二部分生长,以用金属间隙填充物来填充开口。通过选择性沉积处理形成的金属间隙填充物是无缝的,且形成在一个或多个侧壁上的一个或多个层密封在金属间隙填充物与侧壁之间的任何间隙或缺陷。由此,在后续处理中利用的流体不会扩散穿过金属间隙填充物而与设置在金属间隙填充物下面的层相互作用。
17.图1是用于形成金属间隙填充物的方法100的流程图。图2a

图2f绘示在图1的方法100的不同阶段期间基板200的各种视图。应注意方法100可被利用以形成未在本文呈现的任何其他半导体结构。本领域技术人员应认识到,用于形成半导体装置和相关联结构的完整处理并未在这些附图中绘示或在本文中说明。尽管在这些附图中绘示各种操作且在本文中说明,但是并未暗示关于这些步骤的顺序或步骤存在或不存在的限制。除非明确说明,否则依序描绘或说明的操作仅是为了解释的目的而做的,不排除各个步骤实际上是以(如果不是整体地,则至少部分地)并发或重叠的方式实行的可能性。
18.方法100通过在处理腔室中在基板200上实行预清洁处理而在操作102处开始。在一个范例中,处理腔室是蚀刻腔室。如图2a中所示,基板200包括第一层202、在第一层202中形成的至少一个开口204和设置在开口204中的第二层206。第一层202可以是介电层,介电层是由sio2、sin、sicn、al2o3、aln或其他适合的介电材料制成。或者,在硬模(hardmask)应用中,第一层202可以是碳层。开口204可以是过孔(via)或沟槽,且开口204被第二层206的
表面210和第一层202的一个或多个侧壁212界定。开口204具有高度h1。第二层206可由导电材料制成,导电材料例如是金属、半导体、导电陶瓷或其他适合的导电材料。在一个范例中,第二层206由钴、氮化钛或硅制成。
19.预清洁处理在第二层206的表面210上实行。实行预清洁处理以移除第二层206的表面210上的污染物,例如金属氧化物、氟化物、碳、聚合物或其他蚀刻处理后残留物。预清洁处理可以是任何适合的清洁方法,例如化学清洁或等离子体清洁。化学清洁利用清洁剂或反应气体,清洁剂例如是氢自由基,反应气体例如是h2、co、c2h5oh、wf6、wcl5或其他适合的反应气体。某些清洁剂,例如氢自由基、h2或co,将金属氧化物污染物还原成金属。某些清洁剂,例如wf6或wcl5,通过将污染物挥发成气体来腐蚀污染物。在一个范例中,预清洁处理利用氢自由基以还原诸如coo
x
、cuo
x
和/或wo3这样的金属氧化物。氢自由基可在远程等离子体源中形成,然后与氢气或氩气一起流动至基板200。基板200可维持在从约200摄氏度至约400摄氏度的范围的温度。在另一个范例中,预清洁处理利用h2热浸以还原诸如coo
x
、cuo
x
和/或wo3这样的金属氧化物。热浸处理包括使氢气和氩气流至处理腔室中,腔室压强的范围从约30torr至约300torr,且基板200维持在从约300摄氏度至约600摄氏度的范围的温度。在另一个范例中,预清洁处理利用乙醇浸泡以还原金属氧化物,且基板200维持在从约200摄氏度至约400摄氏度的范围的温度。在另一个范例中,预清洁处理利用wf6或wcl5浸泡以与金属氧化物反应,且在高温和低压下将金属氧化物转换成气/液相金属化合物(例如,wof4、cucl2、cocl2),且基板200维持在从约200摄氏度至约500摄氏度的范围的温度。
20.预清洁处理可以是等离子体清洁处理。等离子体清洁处理利用ar/he等离子体或h2等离子体。一些等离子体清洁处理物理地将污染物溅射离开,而其他等离子体清洁处理强化反应以清洁表面210。在一个范例中,预清洁处理利用氩等离子体,且氩离子物理地溅射在第二层206的表面210上的污染物。氩等离子体可以被电容耦合、电感耦合或电容耦合与电感耦合的结合。等离子体频率的范围是从约350khz至约40mhz,等离子体功率的范围是从约0w至约1000w,且腔室压强的范围是从约10mtorr至约100torr。在另一个范例中,预清洁处理利用氢等离子体,且氢离子与第二层206的表面210上的污染物反应,以形成金属和水。氢等离子体清洁处理具有类似氢热浸的化学作用,但在氢等离子体清洁处理中利用更少的热能。
21.在一个范例中,使用远程等离子体源在处理腔室中实行预清洁处理。适合用于实行预清洁处理的一个范例处理腔室是可从美国加州圣克拉拉市的应用材料公司获得的aktiv pre

clean
tm
腔室或清洁腔室。或者,在蚀刻腔室中实行预清洁处理,例如使用电感耦合等离子体(icp)源的蚀刻腔室。一个范例蚀刻腔室可以是可从美国加州圣克拉拉市的应用材料公司获得的修改的解耦等离子体氮化(dpn)腔室。然而,应考虑来自其他制造商的其他被适当地构造的腔室也可实施以实行预清洁处理。
22.在操作104处,在第二层206的清洁后的表面210上实行成核处置(nucleation treatment)。成核处置消除要在表面210上和在开口204中形成金属间隙填充物的孕育期(incubation period),且还消除晶格失配,因为在不同金属上的某种金属生长孕育是非常困难的。如图2b中所示,成核处置可包括在第二层206的表面210上形成金属种晶层(metal seed layer)214。金属种晶层214可由钨、钴、钌或其他适合的金属制成。金属种晶层214通过选择性处理形成,所以金属种晶层214并未形成在一个或多个侧壁212上。在一个范例中,
金属种晶层214通过利用例如b2h6、sih4、si2h6、wf6、wcl5、ticl4或其他适合的气体的一种或多种气体的化学浸泡处理来形成。在另一个范例中,金属种晶层214通过选择性金属原子层沉积(ald)处理而形成。在选择性金属ald处理中利用的一种或多种前驱物包括b2h6、wf6、h2、sih4、wcl5、w(co)6或其他适合的前驱物。在一些实施方式中,利用含有除了钨以外的金属的一种或多种气体。例如,可利用含钴或钌的气体以形成金属种晶层214。在一些实施方式中,省略成核处置且不存在金属种晶层214。
23.下一步,在操作106处,如图2c中所示,在金属种晶层214上形成金属间隙填充物的第一部分216。在一些实施方式中,金属间隙填充物的第一部分216形成在第二层206的表面210上。金属间隙填充物的第一部分216由金属制成,例如钨、钴、钌或其他适合的金属。第一部分216通过选择性处理形成,且从底部向上生长。换句话说,第一部分216选择性地形成在金属种晶层214或第二层206的表面210上,或从金属种晶层214或第二层206的表面210生长,且并未形成在一个或多个侧壁212上。如图2c中所示,第一部分216与一个或多个侧壁212的一部分接触,但第一部分216并未从一个或多个侧壁212生长。第一部分216具有高度h2,且高度h2是开口204的高度h1的约百分之十至约百分之五十。
24.用于形成第一部分216的选择性处理可以是化学气相沉积(cvd)处理,且选择性是基于腔室压强和前驱物气体的比例。在一个范例中,选择性处理包括使含金属气体和第二气体流至处理腔室中。含金属气体可以是任何适合的含金属气体,例如wf6。第二气体可以是氢气。第二气体与含金属气体的比例范围从约六比一至约八千比一。腔室压强的范围从约1torr至约300torr,且基板维持在从约200摄氏度至约500摄氏度的范围的温度。腔室压强和气体的比例能影响选择性。在一个范例中,在相对高的温度,例如大于约400摄氏度,当第二气体与含金属气体的比例是高的且腔室压强是低的时候,维持选择性。
25.下一步,在操作108处,如图2d中所示,实行溅射处理以移除金属间隙填充物的第一部分216的一些,且在一个或多个侧壁212上形成一个或多个层218。溅射处理可具有与利用氩等离子体的预清洁处理相同的处理条件。溅射处理将金属间隙填充物的第一部分216的一些溅射至一个或多个侧壁212上。由此,在每个侧壁212上形成层218。层218由与金属间隙填充物的第一部分216相同的材料制成。
26.下一步,在操作110处,如图2e中所示,在金属间隙填充物的第一部分216上形成金属间隙填充物的第二部分220。第二部分220可通过与用于金属间隙填充物的第一部分216的处理相同的处理形成。第二部分220由与第一部分216相同的材料制成。在开口204中形成的金属间隙填充物包括第一部分216、一个或多个层218和第二部分220。用于形成金属间隙填充物的多步骤是无缝的,且在金属间隙填充物与侧壁212之间不存在间隙或缺陷。由此,在后续处理中利用的流体不会扩散穿过金属间隙填充物而与第二层206作用。
27.下一步,在操作112处,如图2f中所示,在基板200上实行化学机械抛光(cmp)处理,以形成平坦表面222。在cmp处理期间,浆料不会扩散穿过具有第一部分216、层218和第二部分220的金属间隙填充物,因为侧壁212被层218密封。如此,在cmp处理中第二层206被保护不受浆料影响。
28.参照回图1,实行操作106、108和110以形成无缝金属间隙填充物,且在金属间隙填充物与侧壁之间不具有间隙或缺陷。在一些实施方式中,用单一操作取代操作106、108和110,而从底部向上形成单相晶体(single phase crystal)金属间隙填充物。单相晶体金属
间隙填充物不具有任何形成在金属间隙填充物中的晶界,且金属间隙填充物的阻抗(resistivity)与开口204的尺寸无关。因此,单相晶体金属间隙填充物是无缝的且具有降低的电阻。单相晶体金属间隙填充物可通过cvd处理形成,其中基板200被维持在大于或等于450摄氏度的温度。
29.根据本文所提供的教示可适当修改的处理系统的范例包括可从位于美国加州圣克拉拉市的应用材料公司商业上获得的或集成处理系统,或其他适合的处理系统。应考虑可应用其他处理系统(包括来自其他制造商的处理系统)以从本文所述的方面获益。图3示出根据本公开内容的多个实施方式的范例多腔室处理系统300的示意性俯视图,范例多腔室处理系统300能用于完成图1中绘示的方法100。如图3中所示,多个处理腔室302耦接至第一传送腔室304。第一传送腔室304还耦接至第一对直通腔室(pass

through chamber)306。第一传送腔室304具有中心设置的传送机械手(未图示),用于在直通腔室306和处理腔室302之间传送基板。直通腔室306耦接至第二传送腔室310,第二传送腔室310耦接至构造成实行例如操作102这样的预清洁处理的处理腔室314,和构造成实行例如操作106这样的成核处置操作的处理腔室316。第二传送腔室310具有中心设置的传送机械手(未图示),用于在一组负载锁定腔室312与处理腔室314或处理腔室316之间传送基板。工厂接口(factory interface)320通过负载锁定腔室312连接至第二传送腔室310。工厂接口320在与负载锁定腔室312的相对侧上耦接至一个或多个舱330。舱330通常是可从无尘室进出的前开式标准舱(foup)。
30.在操作期间,基板首先被传送至处理腔室314,在处理腔室314中实行例如操作102这样的预清洁处理,以移除诸如来自开口的底部的金属氧化物污染物之类的污染物。然后,基板被传送至处理腔室316,在处理腔室316中实行操作106。基板然后被传送至一个或多个处理腔室302,在一个或多个处理腔室302中实行操作106、108和110。因为所有的操作102、104、106、108和110都在同一处理系统300中实行,所以真空不会随着基板被传送至各个腔室而被破坏,这减少了污染的机会且提高了金属间隙填充物的质量。
31.系统控制器380耦接至处理系统300,用于控制处理系统300或控制处理系统300的部件。例如,系统控制器380可使用处理系统300的腔室302、304、306、310、312、314、316的直接控制来控制处理系统300的操作,或通过控制与腔室302、304、306、310、312、314、316相关联的控制器360来控制处理系统300的操作。在操作中,系统控制器380使得能够从各个腔室进行数据收集和反馈,以协调处理系统300的性能。
32.系统控制器380一般包括中央处理单元(cpu)382、存储器384和支持电路386。cpu 382可以是能在工业环境中使用的任何形式的通用处理器的一种。存储器384、非暂时性计算机可读介质或机器可读存储装置,可通过cpu382存取且可以是一个或多个存储器,例如随机存取存储器(ram)、只读存储器(rom)、软盘、硬盘或数字储存的任何其他形式,不论是本地或远程。支持电路386耦接至cpu 382,且可包含高速缓冲存储器、时钟电路、输入/输出子系统、电源和类似装置。系统控制器380被构造成实行存储在存储器384中的方法100。在本公开内容中公开的各种实施方式一般可在cpu 382的控制下通过执行存储在存储器384中(或在特定处理腔室的存储器中)的计算机指令代码(作为例如计算机程序产品或软件程序)来实施。即,计算机程序产品实体地(tangibly)安装在存储器384(或非暂时性计算机可读取介质或机器可读取存储装置)上。当通过cpu 382执行计算机指令代码时,cpu 382控制
腔室以实行根据各种实施方式的操作。
33.综上所述,本公开内容的多个实施方式使得能够形成无缝金属间隙填充物,该无缝金属间隙填充物避免任何流体穿过而扩散。该无缝金属间隙填充物通过多步骤处理形成,该多步骤处理包括:通过选择性沉积处理使金属间隙填充物的第一部分生长;实行溅射处理以在一个或多个侧壁上形成一个或多个层;和通过选择性沉积处理使金属间隙填充物的第二部分生长,以用金属间隙填充物来填充开口。通过选择性沉积处理形成的金属间隙填充物是无缝的,且在一个或多个侧壁上形成的一个或多个层密封在金属间隙填充物与侧壁之间的任何间隙或缺陷。由此,在后续处理中利用的流体不会扩散穿过金属间隙填充物。
34.尽管上述内容针对本公开内容的实施方式,可在不脱离本公开内容的基本范围的情况下,设计出本公开内容的其他和进一步实施方式,且本公开内容的范围通过随附权利要求来确定。
转载请注明原文地址:https://win.8miu.com/read-25346.html

最新回复(0)