基于极限学习机的铝合金减速器壳体铸造参数设计方法与流程

专利检索2022-05-10  13



1.本发明涉及一种铝合金减速器壳体铸造参数设计方法,属于铸造成型技术领域,具 体地说是一种基于极限学习机的铝合金减速器壳体铸造参数设计方法。


背景技术:

2.汽车减速器壳体作为重要零部件,提供对主减速器的支承与防护,承受传动轴、车 架与道路传递的载荷,直接影响车辆的可靠性与操纵稳定性。传统的减速器壳体材料为 球墨铸铁,而随着汽车轻量化发展的需求,铝合金等轻质材料具有质量轻,综合性能好 等特性,逐步被用于减速器壳体部件的制造。
3.目前,铝合金减速器壳体的主要制造方法为铸造法,铸造缺陷主要为缩松缩孔缺陷。 此类缺陷是由于铸造工艺参数设置不合理导致,多分布于壳体的主动齿轮外轴承处与差 速器轴承座处。这使得此受载区域力学性能下降,在车辆行驶过程中出现壳体开裂等现 象。
4.为消除铸造缺陷,现阶段厂家多采用经验法或者简单调参法进行工艺参数设计,即 凭借生产经验确定工艺参数,或者是在缺乏科学方法的情况下,不断地调整参数,通过 简单的穷举来获得较优工艺参数。此类方法需要耗费大量成本,最终也很难得到合理的 工艺参数,消除铸造缺陷。因此,为了能够高效的解决铝合金减速器壳体的铸造缺陷, 一种科学的铸造工艺参数设计方法是必需的。


技术实现要素:

5.本发明的目的是针对目前铝合金减速器壳体铸造过程中铸件缺陷难以消除的问题, 提供一种基于极限学习机的铝合金减速器壳体铸造参数设计方法,该方法能够科学高效 地确定最优工艺参数组合,提高减速器壳体的成型质量,减少铸造缺陷,降低制造成本, 并提高生产效率。
6.本发明采用的技术方案是:一种基于极限学习机的铝合金减速器壳体铸造参数设计 方法,包括以下步骤:
7.步骤一:减速器壳体初步浇注工艺方案设计;
8.根据铝合金减速器壳体的结构进行工艺方案设计,使用铸造仿真软件进行数值模拟, 并根据模拟结果对工艺方案进行改进,得到合理的初步工艺方案。
9.步骤二:优化工艺参数的确定与试验设计;
10.根据初步工艺方案的结果,分析选取多个工艺参数为优化变量,选择合理的优化目 标,提取一定数量的试验样本点并通过数值仿真得到对应的样本数据。
11.步骤三:基于极限学习机的模型训练与仿真测试;
12.基于步骤二获取的试验样本获取极限学习机训练集与测试集,创建训练极限学习机 并进行仿真测试,获取精度较高的极限学习机回归模型。
13.步骤四:基于鱼群算法的参数寻优;
14.采用鱼群算法,针对极限学习机回归模型进行参数寻优,获取设计空间内最优工艺 参数组合。
15.步骤五:生产验证;
16.针对步骤四中得到的最优工艺参数进行试制验证,获取最终方案,得到合格铸件并 投入生产。
17.进一步地,所述步骤一中,工艺方案设计包括以下几点:
18.(1)浇注系统设计,包括升液管,直浇道,横浇道,浇口等。
19.(2)模具设计,包括上模具,下模具,侧模具,分流锥,砂芯与排气系统等。
20.(3)材料参数设计,其中铸件材料为铝合金,模具材料为h13模具钢。
21.(4)时间参数设计,包括升液时间,充型时间,增压时间,保压时间与卸压时间。
22.(5)压力参数设计,与时间参数对应,包括升液压力,充型压力,增/保压压力,卸 压压力。
23.(6)温度参数设计,包括浇注温度,各模具预热温度。
24.进一步地,所述步骤一中,数值模拟包括模型检查、网格划分、参数赋予、边界条 件设置。有参考价值的模拟结果为充型压力场,温度分布场,凝固时间图,孔隙缺陷分 布图与二次枝晶臂间距分布图等。
25.进一步地,所述步骤二中,优化变量是指在铸造过程中可调控的工艺参数,优化目 标是指铸件质量指标参数。试验样本点是根据正交试验法与均匀化试验法所确定的合理 分布的工艺参数组。
26.进一步地,所述步骤三中,极限学习机使用单层前馈神经网络结构,其组成包括输 入层、隐含层和输出层。极限学习机模型预测精度根据其预测值与样本值的误差来评价。
27.进一步地,所述步骤四中,鱼群算法通过模拟鱼类行为在设计空间内进行寻优,具 体行为包括鱼群初始化,觅食行为,聚群行为,追尾行为与随机行为。
28.进一步地,所述的可调控工艺参数为时间参数,压力参数与温度参数;所述的铸件 质量指标参数包括孔隙缺陷,热裂纹,裹气量,二次枝晶臂间距与凝固时间等。
29.进一步地,极限学习机的隐含层输出t为:
30.t=h(x)β
31.其中,β为输出权值,x为极限学习机输入,h(x)为激励函数。
32.h(x)激励函数的作用是将输入层的数据由其原本的空间映射到极限学习机的特征 空间,可表示为:
33.h(x)=g(ω,b,x)
34.其中,ω为输入权值,b为隐含层神经元的阈值。
35.h(x)激励函数具有随机性,可以是任意非线性的片段连续函数,包括三角函数,高 斯函数,径向基函数,sigmoid函数,双曲正弦函数等。
36.本发明具有以下有益效果:
37.(1)本发明可针对不同类型的铝合金减速器壳体,具有较高的适用性。
38.(2)本发明提出了最优工艺参数组的设计方法,解决了目前铸造工艺参数设计依赖工 程师经验的问题。
39.(3)本发明利用极限学习机与鱼群算法结合,得到精准的预测模型并解得最优参
数组, 与简单的调参法相比,较好地缩短了设计周期,节省时间成本。
附图说明
40.图1是本发明方法的流程图。
41.图2是本发明实例中减速器壳体结构示意图。
42.图3为本发明实例中减速器壳体铸造压力曲线示意图。
43.图4是本发明中铸件与模具的换热系数变化曲线。
44.图5为本发明中极限学习机模型结构原理图。
45.图6为本发明实例中样本试验值与极限学习机模型输出预测值的对比图。
具体实施方式
46.为了使本领域技术人员更好的理解本发明,以下结合附图及实施例,对本发明进行 进一步详细描述。
47.基于极限学习机的铝合金减速器壳体铸造参数设计方法,其流程图如图1所示,包 括以下步骤:
48.步骤一:减速器壳体初步浇注工艺方案设计;
49.本发明实例所使用的铝合金减速器壳体结构如图2。此处采用低压铸造工艺,采用 水平分型面,分型面设置为壳体与后桥壳的安装平面。浇注方式采用底注式,在差速器 轴承座处设置浇口。在壳体主动齿轮外轴承、差速器轴承座等处设置冷却,冷却方式为 点冷,冷却介质为水。根据图纸在三维建模环境中进行1:1的三维模型建立,保存为 stl格式导出。根据生产经验,确定使用a356.2铝合金为铸件材料,h13模具钢为模 具材料,浇注温度680℃,模具温度250℃,其压力曲线示意图见图3,各项压力参数如 表1所示。
50.表1铸造压力工艺参数
[0051][0052]
将创建好的模型导入铸造模拟环境,设置初步确定的各项工艺参数,对其进行网格 划分,定义材料、属性,设置边界条件,其中模具与模具之间的换热系数为1500w
·
(m2· k)
‑1,模具与外部环境(环境温度20℃)的换热系数为11.23w
·
(m2·
k)
‑1,铸件与模具 的换热系数见图4。
[0053]
步骤二:优化工艺参数的确定与试验设计;
[0054]
利用铸造模拟软件对初步工艺方案进行计算分析,得到初步方案仿真结果,对比分 析充型压力场、凝固温度场、液相率场等充型凝固过程与孔隙缺陷分布、二次枝晶臂间 距分布等质量指标特征,对方案进行简单改进,并初步确定对质量指标影响较大的工艺 参数为优化变量。
[0055]
本发明实例中,对减速器壳体的孔隙缺陷指标影响较大的参数主要为温度参数与充 型速度参数。减速器壳体具有轴承座区域较厚,中间连接区域较薄的特点,铸件截面积 变化较大,充型速度对充型过程中液面的稳定有较大影响。同时,浇注温度与模具温度 对冷却温度梯度影响较大,若薄壁区域先行凝固,将造成补缩不畅。因此,本实例以孔 隙率为
优化目标,选择浇注温度(a),上模具预热温度(b),下模具预热温度(c)为温度优 化变量,以充型时间(d)为充型速度优化变量,各变量范围,即设计空间见表2。
[0056]
表2优化变量的设计空间
[0057][0058]
通过设计正交试验,对四个变量均取四个水平,设16组试验,并采用均匀化试验 法进行补充试验,共获得29组试验点,即为样本试验点。依次计算得到29个对应的孔 隙率值,其结果见表3。
[0059]
表3试验样本数据
[0060][0061]
步骤三:极限学习机训练与仿真测试;
[0062]
针对步骤二中获取的样本,随机选取25组样本作为训练集,4组样本作为测试集。 为了减少变量差异较大对模型性能的影响,先对数据进行归一化处理。创建并训练极限 学习机,其应用类型取值为0,代表回归问题,激励函数h(x)取sig函数,并随机生成 输入权值ω与隐含层神经元的阈值b。初始选取小于训练样本个数的隐含层神经元个数, 训练与测试在不同隐含层神经元数量下的极限学习机模型,直至模型输出的预测值与试 验值误差最小。选取该隐含层神经元个数下的模型,输出针对训练、测试样本的预测值, 并计算与试验值的误差,见表4。
[0063]
表4样本试验值与模型预测值对比
[0064]
[0065][0066]
根据表中的数据,可得试验值与预测值之间的对比图如图6。可以看出,模型输出 的预测值与试验值的误差较小。证明本次训练所得到的极限学习机模型可以较为精确的 反应各工艺参数与孔隙率指标之间的关系。
[0067]
步骤四:鱼群算法参数寻优;
[0068]
采用鱼群算法,针对极限学习机回归模型进行参数寻优,获取设计空间内最优工艺 参数组合。应用鱼群算法进行铝合金减速器壳体铸造工艺参数的优化时,需确定以下参 数:人工鱼总数n,人工鱼移动最大步长step,人工鱼的感知距离visual,重复尝试最 大次数try

number以及拥挤度因子delta。本实例中所选取的参数见表5。
[0069]
表5鱼群算法运行参数设定
[0070][0071]
本实例中,鱼群算法的目标函数为步骤三中所确定的极限学习机回归模型,即孔隙 率评价值与工艺参数的非线性模型,对该目标函数进行优化计算,最终得到的最优孔隙 率预测值为0.389,与之对应的最优工艺参数组合见表6。
[0072]
表6最优工艺参数组合
[0073][0074]
针对以上鱼群算法所得最优工艺参数进行模拟验证,计算所得试验值为0.396,误 差为

0.007,进一步验证了模型的准确性,也确定了该最优工艺参数的合理性。
[0075]
步骤五:生产验证;
[0076]
针对步骤四中得到的最优工艺参数进行试制验证,获取最终方案,得到合格铸件并 投入生产。
[0077]
本发明提出一种基于极限学习机的铝合金减速器壳体铸造参数设计方法,通过采
取 上述技术方案,将铝合金减速器壳体铸造流程程序化,科学高效地确定最优工艺参数组 合,提高主减速器壳体的成型质量,减少铸造缺陷,降低制造成本成本,并提高生产效 率。
[0078]
以上结合附图以及具体实施方案对本发明专利的实施方式做出详细说明,但本发明 专利不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明专利的原理 和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明 专利的保护范围内。
转载请注明原文地址:https://win.8miu.com/read-250195.html

最新回复(0)