1.本实用新型专利涉及一种锥台嵌挤装配式复合防护结构。
背景技术:
2.近年来,随着武器装备的不断升级和发展,以及恐怖爆炸袭击的严峻态势,对装甲设备和防护结构的防护性能提出更为严峻地挑战,研发更轻盈、更有效的装甲和防护结构任重道远。陶瓷材料(如al2o3、b4c、sic、tib2和aln等) 具有低密度、高硬度、高抗压强度等特点,能够有效地钝化和磨蚀弹丸,可以显著提高装甲的抗侵彻性能。混凝土是目前应用最广泛的土木工程材料之一,广泛地应用于军事和人防工程中,也是核安全壳极为重要的材料。但是陶瓷、混凝土作为低韧性和低抗拉强度的脆性材料,其在弹体的冲击下很容易发生整体脆性破碎和崩塌现象,抗侵彻性能受到严重影响。当陶瓷或者混凝土材料遮弹层结构在韧性材料(钢管、纤维增强材料等)分区块约束下,其抗弹性能明显优于无约条件下的遮弹层,而且分区块约束的基础单元直径越小,其抗侵彻性能和抗多发打击性能越好。这是由于其在约束作用下,其径向膨胀和裂纹开展都受到限制,很大程度地提高其强度和韧性,明显地提高其抗侵彻性能。
3.研究表明,陶瓷材料在分区块约束的基础上施加预应力,抗侵彻性能可以得到进一步地提高。试验发现,陶瓷靶在侧向板约束下并施加双轴预应力(围压),其静态、动态强度以及硬度都随着预应力的增大而增大。施加在陶瓷靶上的预应力可以抵消弹丸局部冲击瞬态拉应力,有效抑制靶体内部裂纹萌生和扩展。即使在高速冲击下陶瓷内部发生断裂或者破碎,但各裂块之间挤压紧密,只有裂纹而没有扩容,使得破碎陶瓷区域内部存在更大的侵彻阻力,十分有效的提高陶瓷的抗侵彻和抗冲击性能。虽然目前预应力约束条件下的混凝土在抗侵彻性能研究较为少见,但分区块预应力约束效应同样适用于混凝土、玻璃等脆性材料。
4.分区块陶瓷预应力约束主要有机械挤压法和热装法。机械挤压法是在陶瓷面板面内方向推动侧向板直接挤压陶瓷板的侧面,对陶瓷施加横向预应力;热装法是将存在盈差的陶瓷块和金属约束环在高温下装配,热膨胀系数较大、收缩更快的金属在整体降温后压缩陶瓷施加预应力,如申请号为201810777211.4 的中国专利申请公开的一种约束陶瓷
‑
金属复合防弹装甲板及其制备方法。但这两种方法对陶瓷材料施加预应力比较困难,而对耐热性能较差的混凝土和玻璃等脆性材料进行分区块预应力约束更为困难。申请号为202010591444.2的中国实用新型专利申请公开了一种用于复合装甲结构的预应力约束块,通过锥台填充体与约束环锥面配合而楔紧,较为简便地对填充体施加径向预应力,可以在室温条件下实现对陶瓷、混凝土或者玻璃等填充材料施加双轴预应力。如果在双轴预应力的基础上进一步对约束块施加第三向预应力,将会对其抗弹性能有更大幅度地提高。
5.目前预应力混凝土在大跨度结构中应用非常广泛,常用的预应力方法有先张法和后张法,两者都是通过预张拉的钢筋回弹施加预应力。先张法适用于中小型构件,比较容易对小尺寸混凝土构件施加预应力,但很难对多块小尺寸构件组合结构实现围压预应力约
束,而且一旦预应力施加完毕后,不能二次调整预应力大小。后张法一般用于大型构件,预应力混凝土在爆炸或者侵彻强动载作用下,容易出现大面积崩塌和飞溅,预应力可能会起到反作用;而应用到小尺寸构件时,预应力钢筋布置较为困难,即使布置好预应力钢筋,由于钢筋过短而出现非常大的预应力损失,无法精确控制材料所加载的预应力,难以施加有效预应力。除了先张法和后张法外,膨胀混凝土也可以在材料内部产生预应力,预应力大小在0.17mpa~3.45mpa之间,但预应力较小,多用于收缩补偿和自应力混凝土,一般不作为混凝土结构的预应力加载方式。因此采用上述预应力方法很难实现分区块预应力约束。目前用于防护结构的门、板、墙等大型的多采用钢筋混凝土或者钢板
‑
混凝土结构,还未见有装配式分区块预应力约束的门、板、墙等混凝土防护结构。
技术实现要素:
6.本实用新型解决现有技术的不足而提供一种锥台嵌挤装配式复合防护结构,本实用新型将混凝土、陶瓷和玻璃等材质的填充块压入金属或者纤维增强聚合物制成的套箍或者约束框架的每格套箍内,套箍通过锥面楔紧方式对填充块施加双向或者三向预应力,形成一种分区块预应力约束、可装配式复合防护结构。
7.本实用新型采用如下技术方案实现:
8.一种锥台嵌挤装配式复合防护结构,包括约束框架、背板、填充块和缓冲垫块,所述约束框架内设有多个与填充块大小相匹配的通孔构成安装孔,所述约束框架设置在背板上,所述填充块为锥台型,所述缓冲垫块设置在填充块的小端上,所述缓冲垫块和填充块安装在约束框架的安装孔内,并且所述填充块通过锥面配合楔紧在约束框架的安装孔内,同时将所述缓冲垫块约束在安装孔的底部。
9.本实施方式中,所述约束框架由多个套箍的外壁相互连接而成,所述套箍内腔形成所述安装孔。
10.本实施方式中,所述填充块为六棱锥台型或正四棱锥台型或圆锥台型或者正十二棱锥台型。当填充块为六棱锥台型时,所述约束框架由多个六边形套箍相互连接形成蜂巢型。
11.本实施方式中,所述约束框架的开口侧上设置有盖板,所述约束框架夹装在背板和盖板之间,所述盖板、填充块、缓冲垫块和背板上对应设有至少一个螺栓孔,所述盖板和背板通过螺栓将填充块、缓冲垫块相互固定连接。采用上述结构,通过螺栓的松紧来调节背板和填充块之间、沿垂直填充块台面方向的预应力大小,填充块的强度随着预应力的增大相应增大。
12.本实施方式中,所述套箍之间的缝隙内填充有缝隙填充体。所述缝隙填充体采用如混凝土或纤维增强聚合物等材料,缝隙填充体一方面可以连接相邻的套箍,另一方面提高约束框架整体性。
13.本实施方式中,所述约束框架的开口侧上设置有盖板,所述约束框架夹装在背板和盖板之间,所述盖板、缝隙填充体和背板上对应设有至少一个螺栓孔,所述盖板、缝隙填充体和背板通过螺栓相互固定连接。
14.本实施方式中,所述填充块内预埋有螺栓锚固件,所述填充块内的螺栓锚固件从背板预留的螺栓孔穿出,并与背板锚固。
15.本实施方式中,所述填充块为单层或者多层结构,所述填充块采用陶瓷层、混凝土层、玻璃层中的一种或者多种叠合而成,并且所述填充块外表面包裹纤维增强聚合物或者金属板形成表面加固层。由于陶瓷、混凝土等材料的锥台在推入套箍过程中,与套箍接触的填充块边角区域容易出现局部破损,因此可以在填充块推入套箍之前,在其表面包裹纤维增强聚合物或者设置金属板材料进行表面加固,防止推挤过程中局部应力过大而破坏或者出现分层。所述填充块的内至少预埋一个所述螺栓,预埋在填充块内的螺栓从背板预留的螺栓孔穿出,并与盖板锚固。
16.本实施方式中,所述填充块和匹配的套箍内锥面倾角大小范围为0.5
°
~10
°
,优选1
°
~4
°
,这里所指的锥面倾角为填充块的锥台外侧壁和套箍内圈壁的圆锥母线与竖直方向的夹角或锥台外侧壁和套箍内圈壁的棱锥棱线与竖直方向的夹角。
17.本实施方式中,所述填充块的厚度以约束框架的中心向四周以抛物线形式减少或者线性减少,所述缓冲垫块的厚度随着填充块厚度的减少而相应的增加,使得每个安装孔内填充块和缓冲垫块的总厚度与安装孔的深度相匹配。通过填充块厚度的变化,使得本装置整个结构中部的填充块厚于四周的填充块,这样本结构受到爆炸或者面外强动载作用后,弯矩从跨中区域向四周减少,有利于节省成本,提高材料的利用率。
18.本实用新型的有益效果:
19.与现有技术相比,本实用新型通过套箍约束原理,使得套箍约束填充块具有自紧功能,在本装置作为防护结构时,可以大大提高防护效果,而且本装置将填充块压入约束框架中的套箍中,通过在装配时控制下压深度,可以控制围压预应力的大小,使填充块的抗侵彻和抗爆炸性能达到最优,本装置同时可通过螺栓的松紧来调节背板和填充块之间、沿垂直填充块台面方向的预应力大小,填充块的强度随着预应力的增大相应增大,本装置中,填充块可以为混凝土、陶瓷或玻璃等材质,套箍可以由金属或者纤维增强聚合物制成,因此套箍在室温条件下可以非常简便的对填充块施加径向、垂直方向预应力,从而可以有效遏制填充块裂纹的扩展,提高整个结构的抗侵彻性能,适合各种尺寸的防护构件施加预应力;约束框架采用多个套箍组合的形式,而约束框架结构发生破坏时,通过更换套箍,可以实现约束框架的快速拆卸和修复,另外,由于填充块为锥台形,填充块的底面外径与套箍安装孔的内径具有更大的容差,可以容许更大的加工误差,相比其它装配方式更环保、更容易实现,施加预应力或者调节预应力大小更为简便。单个套箍预应力约束填充块具有优越的抗局部冲击性能,而多个套箍组合成蜂巢型约束框架具有优越的整体性和抗弯能力,表现出非常好的整体性能。由于填充块推入套箍内后形成门、板、墙等板体结构,围压预应力约束作用可以大幅度提高填充块的抗压强度,相应地提高板体受压区的抗压强度,提高板体整体抗弯强度和抗弯刚度,使得该结构具更加优异的抵抗爆炸冲击等整体效应荷载的性能。
20.综上所述,本装配式复合防护结构由约束框架和多块填充块拼装而成,分区块预应力约束作用可以提高结构的抗侵彻和抗爆性能,很大程度地减少侵彻或者爆炸作用的损伤范围,能够经受多次打击。在只出现某一块填充块破坏的情况下,不需要更换其它填充块,只需要取出更换破坏的填充块,比更换整个大面积填充块更节省成本。而且当填充块受损后,可以从套箍大端口拆卸取出,快速修复更换破损构件。鉴于这些优点,本实用新型在岛礁防护结构、飞机洞库、导弹井盖、舰船、武装直升机、装甲车和坦克等多种防护领域具有广阔的应用前景。
附图说明
21.图1为本实用新型实施例1的内部结构装配图。
22.图2为本实用新型实施例1的外部结构示意图。
23.图3为本实用新型实施例2的内部结构装配图。
24.图4为本实用新型实施例2的外部结构示意图。
25.图5为本实用新型实施例3的内部结构装配图。
26.图6为本实用新型实施例3约束框架、锥台填充体和缓冲垫块的结构示意图。
27.图7为本实用新型实施例4的内部结构装配图。
28.图8为本实用新型实施例4的外部结构示意图。
29.图9为本实用新型实施例5的内部结构装配图。
30.图10为本实用新型实施例5的外部结构示意图。
31.图11为本实用新型实施例6的内部结构装配图。
32.图12为本实用新型实施例6的外部结构示意图。
33.图13为本实用新型实施例7的内部结构装配图。
34.图14为本实用新型实施例7的外部结构示意图。
35.图中标号:1、填充块;11、螺栓孔;2、约束框架;3、缓冲垫块;4、盖板; 5、背板;6、螺栓;7、缝隙填充体;8、螺栓锚固件。
具体实施方式
36.下面根据附图对本实用新型的几种实施方式进行详细说明。
37.实施例1:
38.本实施例中,填充块1为六棱锥台型填充块1,约束框架2为蜂巢型约束框架2,蜂巢型约束框架2由多个六棱锥台型套箍组合而成,六棱锥台型填充块1 和约束框架2组成如图1所示的本装置。套箍通过螺栓锚固在背板5上,或者通过焊接的方式与背板5连接,在每个套箍安装孔的底部填充有如泡沫铝、泡沫聚合物等带有弹性的、具有缓冲功能的材料制作而成的缓冲垫块3,然后将填充块1压入约束框架2中的套箍中,通过控制下压深度控制填充块1侧向围压预应力的大小,使填充块1的抗侵彻和抗爆炸性能最优。
39.所有填充块1压入约束框架2后,盖上盖板4,在背板5、缓冲垫块3、填充块1、盖板4上预留的螺栓孔11,采用螺栓将背板5、约束框架2和盖板4构件组合成整体结构,如图2所示。通过螺栓的松紧调节,可以调节垂直填充块1 台面方向的预应力,从而对填充块1实现三向预应力,增加填充块1的抗弹和抗冲击性能,而当该结构发生破坏后,可以快速拆卸和修复。
40.实施例2:
41.如图3所示,本实施例与实施例1不同之处在于,本实施例中,填充块1为圆锥台型填充块1,约束框架2的套箍为圆锥台型套箍,圆锥台型填充块1装配时,各套箍之间存在缝隙,所以要在套箍之间填充缝隙填充体7,缝隙填充体7 为混凝土、纤维增强聚合物或者泡沫铝等材料,背板5、盖板4、约束框架2和圆锥台型填充块1等组件装配成整体结构如图4所示。
42.实施例3:
43.如图5和图6所示,本实施例与实施例1不同之处在于,本实施例中填充块 1为正四棱锥台型填充块1,为了与正四棱锥台侧面契合,套箍采用四个呈线性变厚度的楔形截面侧板连接构成或采用等厚的侧板按照锥台侧面倾角放置后连接而成。
44.本实施例在应用到防护门、板或者墙结构时,由于门、板或者墙结构的四周边界一般会受到约束,使得本装置的整体结构在受到爆炸或者侵彻强动载作用后,其弯矩一般从跨中区域向四周减少,为了提高材料的利用率,本实施例的所述填充块的厚度以约束框架的中心向四周以抛物线形式减少或者线性减少或者根据弯矩大小而变化,所述缓冲垫块的厚度随着填充块厚度的减少而相应的增加,使得每个安装孔内填充块和缓冲垫块的总厚度与安装孔的深度相匹配。缓冲垫块采用泡沫铝、蜂窝材料、高分子柔性材料作为缓冲垫层吸收冲击波等能量,减少门、板或者墙背后的人和物的损伤。背板5与约束框架2焊接连接或者螺栓连接,为了进一步增加防护效果,可以增加面板约束,通过螺栓紧固背板5和面板,对填充块1进一步施加螺栓轴线方向的预应力,实现三向预应力约束,增加防护性能。
45.实施例4:
46.本实施例中,填充块为正十二棱锥台型填充块1,约束框架2以正十二棱锥台型套箍为基本单元,多个正十二棱锥台型填充块1和约束框架2装配成六边形复合防护结构如图7所示。套箍通过螺栓锚固在背板5上,也可以通过焊接或者粘结的方式与背板5连接,在每个套箍安装孔的底部填充有如泡沫铝、泡沫聚合物等缓冲垫块3,然后将填充块1压入约束框架2中的套箍中,通过控制下压深度控制填充块1侧向围压预应力的大小,使填充块1的抗侵彻和抗爆炸性能最优。各正十二棱锥台型套箍之间的填充缝隙填充体7采用混凝土、纤维增强聚合物或者泡沫铝等材料。背板5、盖板4、缓冲垫块3、约束框架2和正十二棱锥台型填充块1等组件装配成整体结构如图8所示,采用螺栓的松紧调节垂直填充块1台面方向的预应力。
47.实施例5:
48.如图9所示,本实施例与实施例1不同之处在于,本实施例中,整体结构由多个正六棱锥台型填充块1和约束框架2装配成的六边形的复合防护结构,整体结构如图10所示。
49.实施例6:
50.如图11所示,本实施例基于实施例5,不同之处在于,本实施例的正六棱锥台型填充块1和缓冲垫块3上未设置螺栓孔11,仅在盖板4和背板5的边缘处设置螺栓孔,其中盖板4和背板5与填充块1采用粘结剂粘合连接,结构周围采用螺栓连接。本实施例适用于小型防护结构构件,如小型陶瓷复合装甲板,整体结构如图12所示。
51.实施例7:
52.如图13所示,本实施例与实施例5不同之处在于,本实施例中结构未设置盖板4,而是在填充块1内预埋螺栓锚固件8与背板5锚固连接,通过埋置螺栓锚固件8与背板5的紧固程度控制填充块1侧向围压预应力的大小,整体结构如图14所示。本实施例中填充块1的外表面可以包裹纤维增强聚合物或者设置金属板材料进行表面加固,因此可以不设置盖板4。本实施例中,为了增强结构整体性和侧向围压预应力的可控性,填充块1内可以预埋更多的螺栓锚固件8。
53.上述实施例1
‑
5中,每个填充块1只预留一个螺栓孔11,但为了增强结构整体性和增大第三向预应力大小,可以在每个填充块1上预留更多的螺栓孔11,或者在填充块1中至
少预埋一个螺栓锚固件8用于连接背板5。
54.上述7个实施例中的装配式复合防护结构形状不仅仅限于矩形或者六边形 (如:门、板、墙等),还可以拼装成圆形(如:导弹井盖等)或者异形等多种形状,防护结构面板也可拼装成柱面、球冠面等曲面形状,约束框架2的形状和填充块1的数量根据实际工况而确定。除实施例3之外,其它实施例的填充块1的厚度也可以根据可能出现的弯矩分布情况,从跨中区域向四周以抛物线或者线性减少。
55.上述仅为本实用新型的若干具体实施方式,但本实用新型的设计构思并不局限于此,凡利用此构思对本实用新型进行非实质性的改动,均应属于侵犯本实用新型保护的范围的行为。但凡是未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本实用新型技术方案的保护范围。
转载请注明原文地址:https://win.8miu.com/read-1912.html