本发明涉及图像处理,具体为一种基于机器视觉的石榴发酵红茶成熟度检测方法及系统。
背景技术:
1、当前,石榴发酵红茶的成熟度通常依赖于工作人员进行人工判断,尽管这种方式能够提供一定程度的准确评估,但却存在一些显著的局限性。
2、首先,人工判断受主观因素的影响较大,因此可能导致评估结果的不稳定性和一致性不足,不同工作人员的经验水平和判断标准可能存在差异,从而引发评估结果的偏差。其次,人工判断需要大量的时间和人力资源,尤其在大规模生产场景中,这种方式的效率较低。
3、其次,石榴发酵红茶的制作过程受环境条件的影响较大,包括温度、湿度等因素会对工作人员的判断产生影响,进而影响到产品质量的稳定性和一致性。综上所述,当前的人工判断方式存在着一系列的挑战和不足,因此有必要探索更加客观、准确和高效的成熟度评估方式。
技术实现思路
1、针对现有技术的不足,本发明提供了一种基于机器视觉的石榴发酵红茶成熟度检测方法及系统,解决了背景技术中提到的问题。
2、为实现以上目的,本发明通过以下技术方案予以实现:一种基于机器视觉的石榴发酵红茶成熟度检测系统,包括图像采集模块、环境采集模块、气味分析模块、数据校验模块、处理模块和评估模块;
3、所述图像采集模块通过在发酵区域设置的图像采集设备,采集发酵物的实时图像信息,组成实时发酵图像信息组;
4、所述环境采集模块通过在发酵区域设置的环境传感器设备,采集发酵物的实时环境信息,并提取发酵物环境波动信息,组成发酵物环境波动信息组;
5、所述气味分析模块对发酵区域内的挥发性有机化合物浓度进行记录,并标记挥发性有机化合物浓度的波动信息,统计后获取:挥发性有机化合物浓度波动值ndbd;
6、所述数据校验模块对实时发酵图像信息组和发酵物环境波动信息组进行预处理和校验,将处理后的实时发酵图像信息组整合成第一数据集,将处理后的实时发酵环境信息组整合成第二数据集;
7、所述处理模块对第一数据集、第二数据集和挥发性有机化合物浓度波动值ndbd使用深度学习技术,建立发酵物状态识别模型,进行训练和拟合后,获取:发酵物状态指数ztzs;
8、所述评估模块通过预设的发酵物状态过程阈值f与发酵物状态指数ztzs进行匹配,获取发酵物状态评估策略方案,并根据发酵物状态评估策略方案内容进行具体执行通知和提示。
9、优选的,所述图像采集模块包括画面获取单元;
10、所述画面获取单元通过在发酵物进行发酵过程区域内设置的图像采集设备,包括高清摄像头和红外摄像头,实时获取发酵物的发酵过程的图像信息,组成实时发酵图像信息组,并将当前图像采集设备的位置和拍摄图像的参数与实时发酵图像信息组进行集成,发送至所述数据校验模块。
11、优选的,所述环境采集模块包括环境传感器单元;
12、所述环境传感器单元通过在发酵物进行发酵区域设置的若干个环境传感器实时采集发酵物和发酵区域内的环境信息,组成发酵物环境波动信息组,环境传感器包括:温度传感器、湿度传感器和光照度计传感器,并标记环境信息在发酵物的相对值与发酵物环境波动信息组进行集成,发送至所述数据校验模块。
13、优选的,所述气味分析模块包括分析仪单元;
14、所述分析仪单元通过在发酵物的发酵区域内设置的气体浓度分析仪器,实时采集挥发性有机化合物浓度信息,并进行固定周期统计挥发性有机化合物浓度的波动信息,获取:挥发性有机化合物浓度波动值ndbd;
15、所述挥发性有机化合物浓度波动值ndbd具体通过以下统计方式获取:
16、<mstyle displaystyle="true" mathcolor="#000000"><mi>ndbd</mi><mi>=</mi><mfrac><mi>1</mi><mrow><mi>tn</mi><mi>−</mi><mi>1</mi></mrow></mfrac><mi>*</mi><mstyle displaystyle="true"><msubsup><mo>∑</mo><mrow><mi>ti</mi><mi>=</mi><mi>2</mi></mrow><mi>tn</mi></msubsup><mrow><mo>[</mo><mrow><mo>|</mo><mrow><mrow><mo>(</mo><mrow><mi>ti</mi><mi>−</mi><mi>1</mi></mrow><mo>)</mo></mrow><mi>−</mi><mi>ti</mi></mrow><mo>|</mo></mrow><mo>]</mo></mrow></mstyle></mstyle>;
17、式中,tn表示固定周期内统计的挥发性有机化合物浓度值总次数,和ti分别表示第次挥发性有机化合物浓度值和第ti次挥发性有机化合物浓度值,通过计算第次挥发性有机化合物浓度值和第ti次挥发性有机化合物浓度值差值的绝对值之和,并除以固定周期内统计的挥发性有机化合物浓度值总次数,获取固定周期内的挥发性有机化合物浓度的波动信息:挥发性有机化合物浓度波动值ndbd。
18、优选的,所述数据校验模块包括图像校验单元和环境校验单元;
19、所述图像校验单元对实时发酵图像信息组进行切割和预处理,包括图像去噪、图像增强、边缘检测和图像校准,再对切割的图像数据进行色彩空间转换,获取发酵物的颜色分布情况、颜色比例情况和rgb颜色通道信息,再进行整合,组成第一数据集;
20、所述第一数据集包括:r颜色通道像素值rtd,g颜色通道像素值gtd和b颜色通道像素值btd;
21、所述环境校验单元对发酵物环境波动信息组进行预处理和校验,包括数据平滑、异常值剔除和数据差值相关处理操作,再对环境波动信息组进行归一化处理,组成第二数据集;
22、所述第二数据集包括:温度波动值wdz、湿度波动值sdz和光照强度波动值gzz。
23、优选的,所述处理模块包括建模单元;
24、所述建模单元通过使用深度学习技术对第一数据集、第二数据集和挥发性有机化合物浓度波动值ndbd建立发酵物状态识别模型,进行训练后,获取:发酵图像状态系数txxs和发酵环境状态系数hjxs,再对发酵图像状态系数txxs、发酵环境状态系数hjxs和挥发性有机化合物浓度波动值ndbd进行拟合,获取:发酵物状态指数ztzs;
25、所述发酵物状态指数ztzs通过以下计算公式获取:
26、<mstyle displaystyle="true" mathcolor="#000000"><mi>ztzs</mi><mi>=</mi><mrow><mo>[</mo><mfrac><mrow><mi>(z1*txxs)</mi><mo>+</mo><mi>(z2*hjxs)</mi></mrow><mrow><mi>z1</mi><mo>+</mo><mi>z2</mi></mrow></mfrac><mo>]</mo></mrow><mo>+</mo><mi>(z3*ndbd)</mi><mo>+</mo><mi>c</mi></mstyle>;
27、式中,txxs表示发酵图像状态系数,hjxs表示发酵环境状态系数,ndbd表示挥发性有机化合物浓度波动值,z1、z2和z3分别表示发酵图像状态系数txxs、发酵环境状态系数hjxs和挥发性有机化合物浓度波动值ndbd的比例系数;
28、其中,,,,且,c表示第一修正常数。
29、优选的,所述发酵图像状态系数txxs通过以下计算公式获取:
30、<mstyle displaystyle="true" mathcolor="#000000"><mi>blyz</mi><mi>=</mi><mrow><mo>[</mo><mrow><mo>|</mo><mrow><mrow><mo>(</mo><mfrac><mi>rtb</mi><mrow><mi>rtb</mi><mo>+</mo><mi>gtb</mi><mo>+</mo><mi>btb</mi></mrow></mfrac><mo>)</mo></mrow><mi>−</mi><mi>(</mi><mfrac><mi>gtb</mi><mrow><mi>rtb</mi><mo>+</mo><mi>gtb</mi><mo>+</mo><mi>btb</mi></mrow></mfrac><mi>)</mi><mi>−</mi><mi>(</mi><mfrac><mi>btb</mi><mrow><mi>rtb</mi><mo>+</mo><mi>gtb</mi><mo>+</mo><mi>btb</mi></mrow></mfrac><mi>)</mi></mrow><mo>|</mo></mrow><mo>]</mo></mrow></mstyle>;
31、式中,blyz表示rgb颜色通道比例因子,rtd表示r颜色通道像素值,gtd表示g颜色通道像素值,btd表示b颜色通道像素值,通过r颜色通道像素值rtd,g颜色通道像素值gtd和b颜色通道像素值btd的计算,获取rgb颜色通道的比例状态差值表现:rgb颜色通道比例因子blyz;
32、<mstyle displaystyle="true" mathcolor="#000000"><mi>czyz</mi><mi>=</mi><mrow><mo>[</mo><mrow><mi>(</mi><mrow><mo>|</mo><mrow><mi>rtb</mi><mi>−</mi><mi>gtb</mi></mrow><mo>|</mo></mrow><mi>)</mi><mo>+</mo><mi>(</mi><mrow><mo>|</mo><mrow><mi>rtb</mi><mi>−</mi><mi>btb</mi></mrow><mo>|</mo></mrow><mi>)</mi><mo>+</mo><mi>(</mi><mrow><mo>|</mo><mrow><mi>gtb</mi><mi>−</mi><mi>btb</mi></mrow><mo>|</mo></mrow><mi>)</mi></mrow><mo>]</mo></mrow></mstyle>;
33、式中,czyz表示rgb颜色通道差值因子,rtd表示r颜色通道像素值,gtd表示g颜色通道像素值,btd表示b颜色通道像素值,通过r颜色通道像素值rtd,g颜色通道像素值gtd和b颜色通道像素值btd的计算,获取rgb颜色通道的像素差值表现:rgb颜色通道差值因子czyz;
34、<mstyle displaystyle="true" mathcolor="#000000"><mi>txxs</mi><mi>=</mi><mrow><mo>[</mo><mfrac><mrow><mi>(t1*blyz)</mi><mo>+</mo><mi>(t2*czyz)</mi></mrow><mrow><mi>t1</mi><mo>+</mo><mi>t2</mi></mrow></mfrac><mo>]</mo></mrow><mo>+</mo><mi>t3*</mi><mrow><mo>(</mo><mfrac><mrow><mi>rtb</mi><mo>+</mo><mi>gtb</mi><mo>+</mo><mi>btb</mi></mrow><mi>3*3</mi></mfrac><mo>)</mo></mrow><mo>+</mo><mi>h</mi></mstyle>;
35、式中,blyz表示rgb颜色通道比例因子,czyz表示rgb颜色通道差值因子,rtd表示r颜色通道像素值,gtd表示g颜色通道像素值,btd表示b颜色通道像素值,t1和t2分别表示颜色通道比例因子blyz和rgb颜色通道差值因子czyz的比例系数,t3表示r颜色通道像素值rtd,g颜色通道像素值gtd和b颜色通道像素值btd计算结果的比例系数;
36、其中,,,,且,h表示第二修正常数。
37、优选的,所述发酵环境状态系数hjxs通过以下计算公式获取:
38、<mstyle displaystyle="true" mathcolor="#000000"><mi>hjxs</mi><mi>=</mi><mrow><mo>[</mo><mfrac><mrow><mrow><mo>(</mo><mi>h1*wdz</mi><mo>)</mo></mrow><mo>+</mo><mi>(h2*sdz)</mi><mo>+</mo><mi>(h3*gzz)</mi></mrow><mrow><mi>h1</mi><mo>+</mo><mi>h2</mi><mo>+</mo><mi>h3</mi></mrow></mfrac><mo>]</mo></mrow><mo>+</mo><mi>k</mi></mstyle>;
39、式中,wdz表示温度波动值,sdz表示湿度波动值,gzz表示光照强度波动值,h1、h2和h3分别表示温度波动值wdz、湿度波动值sdz和光照强度波动值gzz的比例系数;
40、其中,,,,且,k表示第三修正常数。
41、优选的,所述评估模块包括匹配单元和执行单元;
42、所述匹配单元通过预设的相关信息与需要的对比值进行匹配,包括通过预设的发酵物状态过程阈值f与发酵物状态指数ztzs进行匹配,获取发酵物状态评估策略方案:
43、发酵物状态指数ztzs<发酵物状态过程阈值f,获取发酵物的发酵进程无异常因素影响发酵评估结果;
44、发酵物状态指数ztzs≥发酵物状态过程阈值f,获取发酵物的发酵进程有异常因素影响发酵评估结果,其中,异常因素包括:发酵物发酵区域温度波动异常、发酵物发酵区域湿度波动异常、发酵物发酵区域光照强度波动异常、发酵物颜色异常和发酵物区域存在一定比例异常颜色,当发酵物状态指数ztzs≥发酵物状态过程阈值f两倍时,执行发酵物的发酵进行预警评估结果,发送通知和提示至相关工作人员;
45、所述执行单元根据发酵物状态评估策略方案内容,进行具体执行,包括通知和提示,其中,通知包括:预设语音广播、短信通知和内部软件推送通知,提示包括:交互显示屏幕弹窗提示、交互屏幕闪烁提示和工作人员随身设备震动提示。
46、一种基于机器视觉的石榴发酵红茶成熟度检测方法,包括以下步骤:
47、步骤一:图像采集模块通过在发酵区域设置的图像采集设备,采集发酵物的实时图像信息,组成实时发酵图像信息组;
48、步骤二:环境采集模块通过在发酵区域设置的环境传感器设备,采集发酵物的实时环境信息,并提取发酵物环境波动信息,组成发酵物环境波动信息组;
49、步骤三:气味分析模块对发酵区域内的挥发性有机化合物浓度进行记录,并标记挥发性有机化合物浓度的波动信息,统计获取:挥发性有机化合物浓度波动值ndbd;
50、步骤四:数据校验模块对实时发酵图像信息组和发酵物环境波动信息组进行预处理和校验,将处理后的实时发酵图像信息组整合成第一数据集,将处理后的实时发酵环境信息组整合成第二数据集;
51、步骤五:处理模块对第一数据集、第二数据集和挥发性有机化合物浓度波动值ndbd使用深度学习技术,建立发酵物状态识别模型,进行训练和拟合后,获取:发酵物状态指数ztzs;
52、步骤六:评估模块通过预设的发酵物状态过程阈值f与发酵物状态指数ztzs进行匹配,获取发酵物状态评估策略方案,并根据发酵物状态评估策略方案内容进行具体执行通知和提示。
53、本发明具备以下有益效果:
54、(1)系统运行时,通过图像采集模块、环境采集模块和气味分析模块对发酵物状态信息和发酵物的环境信息进行采集,并通过统计获取:挥发性有机化合物浓度波动值ndbd,数据校验模块对整合的数据信息进行预处理和校验,组成第一数据集和第二数据集,再通过处理模块进行处理和拟合,获取:发酵物状态指数ztzs,最后通过评估模块预设的发酵物状态过程阈值f进行对比,获取发酵物状态评估策略方案,并根据内容进行具体执行,及时发现异常情况并进行预警和提醒,有助于防止发酵过程中的问题和事故发生,保证生产的顺利进行,同时能够自动化地收集和处理发酵过程的信息,减少了人工监测和记录的工作量,降低了人力成本和劳动强度。
55、(2)通过预设的发酵物状态过程阈值f与发酵物状态指数ztzs进行匹配,获取发酵物状态评估策略方案,能够有效的对发酵物的发酵区域内进行有效评估,从而做出合理的适应决策评估方案,使其保持了持续的自适应判断和决策性能,达到为生产管理者提供相应的决策依据,实现对发酵生产过程的精细化管控。
56、(3)通过步骤一至步骤六,获取发酵物的实时发酵图像信息和发酵物环境波动信息,并统计发酵区域内的挥发性有机化合物浓度获取:挥发性有机化合物浓度波动值ndbd,再进行预处理和校验整合成第一数据集和第二数据集,同时建立发酵物状态识别模型,训练后获取:发酵物状态指数ztzs,并与预设的发酵物状态过程阈值f进行匹配,获取发酵物状态评估策略方案,进行自适应通知和提示,达到实时监测发酵过程,减少了人工干预的需要和降低了人工巡检的次数,从而提高了生产效率。
1.一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:包括图像采集模块、环境采集模块、气味分析模块、数据校验模块、处理模块和评估模块;
2.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述图像采集模块包括画面获取单元;
3.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述环境采集模块包括环境传感器单元;
4.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述气味分析模块包括分析仪单元;
5.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述数据校验模块包括图像校验单元和环境校验单元;
6.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述处理模块包括建模单元;
7.根据权利要求6所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述发酵图像状态系数txxs通过以下计算公式获取:
8.根据权利要求6所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述发酵环境状态系数hjxs通过以下计算公式获取:
9.根据权利要求1所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:所述评估模块包括匹配单元和执行单元;
10.一种基于机器视觉的石榴发酵红茶成熟度检测方法,包括上述权利要求1~9任一项所述的一种基于机器视觉的石榴发酵红茶成熟度检测系统,其特征在于:包括以下步骤: