光传感器以及测距方法与流程

专利检索2022-05-11  14



1.本发明涉及一种传感技术,尤其涉及一种光传感器以及测距方法。


背景技术:

2.目前,高敏感度的测距传感器在各应用领域例如医疗领域或车用领域中都非常多个需求应用。特别是,可用于传感极弱光的光传感器是目前主要传感器设计方向之一。然而,目前的测距传感器的测距结果受限于数字转换器330的计数解析度(bin resolution,或称分格解析度),而无法提供实现更高精度的测距结果。有鉴于此,如何一种可有效地传感极弱光且具有高精度的光传感器,以下将提出几个实施例的解决方案。


技术实现要素:

3.本发明是针对一种光传感器以及测距方法,可提供高精度的测距结果。
4.根据本发明的实施例,本发明的光传感器包括光源、传感子像素以及控制电路。传感子像素包括二极管。控制电路耦接光源以及传感子像素,并且用以操作二极管在盖革模式或突崩线性模式。控制电路包括时间至数字转换器。时间至数字转换器耦接二极管。控制电路在连续的多个传感期间,依据多个延迟时间,依序延迟光源在连续的多个传感期间的多个光发射时间。控制电路依序监控时间至数字转换器在对应于多个传感期间所依序输出的多个数字值是否发生改变。当控制电路判断多个数字值发生第一次数值改变时,控制电路依据多个数字值以及所对应的延迟顺序来计算距离值。
5.根据本发明的实施例,本发明的测距方法适用于光传感器。光传感器包括光源、传感子像素以及控制电路。传感子像素包括二极管。控制电路包括时间至数字转换器。测距方法包括以下步骤:通过控制电路操作二极管在盖革模式或突崩线性模式;通过控制电路在连续的多个传感期间,依据多个延迟时间,依序延迟光源在连续的多个传感期间的多个光发射时间;通过控制电路依序监控时间至数字转换器在对应于多个传感期间所依序输出的多个数字值是否发生改变;以及当控制电路判断多个数字值发生第一次数值改变时,通过控制电路依据多个数字值以及所对应的延迟顺序来计算距离值。
6.基于上述,本发明的光传感器以及测距方法,可依据多次光发射时间的调整来判断在对应于所述多次光发射时间的传感结果是否改变,以换算出具有较高精度的测距结果。
7.为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。
附图说明
8.图1是本发明的一实施例的光传感器的架构示意图;
9.图2是本发明的一实施例的传感阵列的示意图;
10.图3是本发明的一实施例的传感电路的电路示意图;
11.图4是本发明的一实施例的二极管的特性曲线图;
12.图5是本发明的一实施例的测距方法的流程图;
13.图6是本发明的一实施例的光传感器的操作时序图;
14.图7是本发明的另一实施例的光传感器的操作时序图。
15.附图标记说明
16.100:光传感器;
17.110:控制电路;
18.120:传感阵列;
19.121_1~121_n、121_a、121_b、121_c、121_d:传感子像素;
20.122:传感像素;
21.130:光源;
22.310:二极管;
23.320:放大器;
24.330:时间至数字转换器;
25.401:特性曲线;
26.s510~s540:步骤;
27.v_spad、v
bd
:崩溃电压;
28.v_apd:突崩电压;
29.ve、v
eb
:超额偏压;
[0030]vop
:工作电压;
[0031]
i:电流;
[0032]
v:电压;
[0033]va
:节点电压;
[0034]vout
:传感信号;
[0035]
m1~m4:电压范围;
[0036]
rq:截止电阻;
[0037]
t0~t6:时间;
[0038]
p1~p4:传感光信号。
具体实施方式
[0039]
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
[0040]
图1是本发明的一实施例的光传感器的架构示意图。图2是本发明的一实施例的传感阵列的示意图。参考图1及图2,光传感器100包括控制电路110、传感阵列120以及光源130。控制电路110耦接传感阵列120以及光源130。传感阵列120包括多个传感子像素121_1~121_n,其中n为正整数。传感子像素121_1~121_n的每一个包括至少一个二极管(光电二极管(photodiode))。所述二极管可为pn接面(pn junction)二极管。在本实施例中,控制电路110可控制传感阵列120,以操作传感子像素121_1~121_n中的二极管在盖革模式(geiger mode)或突崩线性模式(avalanche linear mode)下,以进行光传感操作。
[0041]
在本实施例中,光源130可为红外线激光光源,但本发明并不限于此。在本发明的另一些实施例中,光源130可为可见光光源或不可见光光源。在本实施例中,控制电路110可分别操作传感子像素121_1~121_n的所述多个二极管在盖革模式或突崩线性模式的单光子崩溃二极管(signal-photonavalanche diode,spad)状态,来传感光源130所发射的传感光(脉冲光),而可实现具有低光量且高传感敏感度特性的测距传感功能。
[0042]
在本实施例中,控制电路110可例如是光传感器的内部电路或晶片,并且包括数字电路元件和/或类比电路元件。控制电路110可通过改变传感子像素121_1~121_n中的二极管的偏压电压和/或多个晶体管的控制电压以控制传感子像素121_1~121_n中的二极管的操作模式和/或传感子像素121_1~121_n操作模式。控制电路110可控制光源130发射传感光,并且可对传感子像素121_1~121_n输出的传感信号进行相关信号处理及传感数据运算。在本发明的另一些实施例中,控制电路110也可例如是光传感器的外部电路或晶片,例如某终端装置的中央处理器(central processing unit,cpu)、微处理器(microprocessor control unit,mcu)或现场可程序化栅阵列(fieldprogrammable gate array,fpga)等诸如此类的处理电路或控制电路,但本发明并不以此为限。
[0043]
图3是本发明的一实施例的传感电路的电路示意图。参考图3,本实施例的传感电路300可适用于本发明各实施例所述的控制电路及传感子像素。在本实施例中传感子像素300包括二极管310以及截止电阻rq。控制电路包括放大器320以及时间至数字转换器330。时间至数字转换器330包括计数电路331。在本实施例中,二极管310的第一端耦接工作电压v
op
(v
op
=v
bd
v
eb
),其中v
bd
为崩溃电压(breakdown voltage),并且v
eb
为超额偏压(excess bias voltage)。截止电阻rq耦接在二极管310的第二端以及接地端电压之间。截止电阻rq与二极管310的第二端之间具有节点电压va。放大器320的输入端耦接二极管310的第二端。放大器320的输出端耦接时间至数字转换器330。在本实施例中,控制电路(例如图1的控制电路110)可控制二极管310的偏压,使二极管310操作在盖革模式或突崩线性模式来接收由特定光源(例如图1的光源130)发射的测距光。对此,当二极管310传感到测距光的单光子或数个光子(微量光子)时,放大器320的输入端可接受到由二极管310提供的传感信号,其中所述传感信号可为单光子传感信号。并且,放大器320的输出端可输出经信号放大后的传感信号v
out
至时间至数字转换器330,其中所述经信号放大后的传感信号v
out
可例如是方波脉冲信号。
[0044]
图4是本发明的一实施例的二极管的特性曲线图。图5是本发明的一实施例的校正方法的流程图。参考图1、图2以及图4,本实施例所述的子传感像素的二极管可具有如图4所示的特性曲线401。图4的横轴为二极管的偏压v,并且纵轴为二极管在对应偏压下因光电转换而可产生的电流i。当二极管的偏压v大于0时(如图4所示的电压范围m1),二极管可操作在太阳能电池模式(solar cell mode)。当二极管的偏压v介于0至突崩电压v_apd之间时(如图4所示的电压范围m2),二极管可操作在光电二极管模式。当二极管的偏压v介于突崩(avalanche breakdown)电压v_apd至崩溃电压v_spad之间时(如图4所示的电压范围m3),二极管可操作在突崩线性模式。当二极管的偏压v小于崩溃电压v_spad时(如图4所示的电压范围m4),二极管可操作在盖革模式。ve为超额偏压。在本实施例中,控制电路110控制传感子像素121_1~121_n的多个二极管的偏压,以使所述多个二极管操作在盖革模式或突崩线性模式来接收由光源130发射的传感光。
[0045]
图5是本发明的一实施例的测距方法的流程图。图6是本发明的一实施例的光传感器100的操作时序图。参考图1、图3及图5,本发明的光传感器100可执行以下步骤s510~s540,来进行测距。在步骤s510,控制电路110可操作二极管310在盖革模式或突崩线性模式。在步骤s520,控制电路110可在连续的多个传感期间,依据多个延迟时间,依序延迟光源130在连续的多个传感期间的多个光发射时间。在步骤s530,控制电路110可依序监控时间至数字转换器在对应于多个传感期间所依序输出的多个数字值是否改变。当控制电路110判断多个数字值发生第一次数值改变时,在步骤s540,控制电路110可依据多个数字值以及所对应的延迟顺序来计算距离值。
[0046]
举例而言,参考图6,控制电路110可在连续的十个传感期间依据延迟时间td1~td10依序延迟光源130在连续的传感期间的多个光发射时间。如图6所示的计数时序ep,控制电路110可操作时间至数字转换器330分别在光发射时间各别的延迟时间长度ta后开始进行计数操作。ta为电路的延迟时间,亦可为零。如图6所示的预设发光时序lp,光源130的预设的光发射时间具有等时间长度间隔。对此,如图6所示的调整后的发光时序lp’,光源130的预设的光发射时间分别依据延迟时间td1~td10来调整,以使光源130延迟发射。值得注意的是,延迟时间td1~td10可依据时间至数字转换器330的(最小)计数解析度(sub-bin resolution,或称子分格解析度)tb来决定。在此范例中,延迟时间td1可例如为1
×
tb。延迟时间td2可例如为0.9
×
tb。延迟时间td3可例如为0.8
×
tb。延迟时间td4可例如为0.7
×
tb。延迟时间td5可例如为0.6
×
tb。延迟时间td6可例如为0.5
×
tb。延迟时间td7可例如为0.4
×
tb。延迟时间td8可例如为0.3
×
tb。延迟时间td9可例如为0.2
×
tb。延迟时间td10可例如为0.1
×
tb。延迟时间td1~td10小于时间至数字转换器330的(最小)计数解析度(bin resolution,或称分格解析度)tb,因此本发明可达到子分格解析度(sub-bin resolution)的精确度。
[0047]
在此范例中,二极管310可例如在第一个至第六个传感期间接收到由光源130发射的传感光在传感目标表面所反射的反射光,因此时间至数字转换器330可依据第一个至第六个计数期间的计数结果来输出对应于第一个至第六个距离传感结果的多个数字值,其中所述第一个至第六个距离传感结果可例如皆为91毫秒(ms)。并且,由于二极管310在第七个至第十个计数期间接收到由光源130发射的另多个传感光在传感目标表面所反射的另多个反射光,因此时间至数字转换器330可依据第七个至第十个计数期间的多个计数结果来输出第七个至第十个对应距离传感结果的多个数字值,其中所述第七个至第十个距离传感结果可例如为90毫秒(ms)。因此,控制电路110监控到上述取得的多个数字值在第七个传感期间发生第一次数值改变时,控制电路110可依据例如对应于91毫秒的数字值以及延迟顺序(第七个传感期间的延迟顺序为7,第七个传感期间的延迟与第一个传感期间的延迟差异为(7-1)
×
0.1毫秒)来计算距离值。以时间计算为例(实际可由数字值来计算之),控制电路110可例如依据公式:d-6
×
0.1=91来计算距离传感结果d。因此,控制电路110可计算出距离传感结果d=91 6
×
0.1=91.6毫秒,其中0.1为总延迟次数的倒数(0.1=1/10)。
[0048]
如此一来,控制电路110可得到时间至数字转换器330的(最小)计数解析度的10倍的传感结果,换句话说,本发明可达到子分格解析度(sub-binresolution)的精确度。然而,本发明的传感期间以及延迟次数并不限于上述举例。本发明的传感期间以及光源130的延迟次数可依据预计获得数字转换器330的(最小)的计数解析度倍数来决定。例如,预计计数
解析度倍数为100倍,则上述传感期间以及延迟次数可分别为100次,以使控制电路110计算的距离传感结果可例如是91.65。因此,本实施例的光传感器100可提供高精度的测距结果。就一般测距电路而言,电路的存储空间与测距的解析度成正比,想将解析度提升10倍,就需要将电路的存储空间也增加为10倍。然而本发明可以在不增加电路存储空间的情形下,提高解析度为例如是10倍或100倍。从另一角度而言,本实施例的控制电路110只需监控时间至数字转换器330输出的数字值是否改变,并在发生数字值改变的当下即时计算距离值。换言之,由于本实施例的控制电路110无需记录每一个传感期间的传感结果,因此本实施例的光传感器100还以节省存储空间的方式来获得的高精度的距离传感结果。
[0049]
图7是本发明的另一实施例的光传感器的操作时序图。参考图1、图2及图7,先说明的是,由于传感子像素121_1~121_n的所述多个二极管分别作为单光子崩溃二极管(操作在盖革模式或突崩线性模式),因此当所述多个二极管分别传感到光子而发生崩溃事件后,传感子像素121_1~121_n须分别对所述多个二极管分进行重新偏压,因此会具有一段无法传感光子的期间(可称为死亡时间(dead time))。对此,为了降低死亡时间的影响,本实施例的控制电路110可例如设定本实施例的传感子像素121_1~121_n中的每多个传感子像素作为一个传感像素(或称宏像素(macro-pixel))。例如参考图1,四个传感子像素121_a~121_d可作为一个传感像素122。a~d为正整数,并且小于或等于n。控制电路110可判断传感子像素121_a~121_d是否在对应的同一个曝光时间区间中各别传感到一个或多个光子而同步产生多个传感电流,以作为一个像素传感结果。例如,控制电路110可将传感子像素121_a~121_d的距离传感结果(时间差或距离值)进行计算,以作为一个像素传感结果。
[0050]
具体而言,当传感子像素121_a~121_d的所述四个二极管被操作在盖革模式或突崩线性模式时,控制电路110可将属于同一像素的传感子像素121_a~121_d在时间t0至时间t6一个图框传感期间(即可对应于上述实施例的一个传感期间)依序曝光。亦即上述实施例的每一个传感期间可再包含t0至t6。如图7所示的传感光的发射时序ph1~ph4,在时间t0至时间t6的期间,例如有四个传感光信号(光子)p1~p4被发射至传感像素122。如图7所示的曝光操作时序ep1~ep4,当传感子像素121_1在曝光期间t1中的时间t1接收到传感光信号p1时,传感子像素121_1需经过延迟时间td后才可进行下一次的曝光操作。对此,如果传感子像素121_2~121_4的曝光期间t2~t4与曝光期间t1相同,则传感子像素121_1~121_4只能接收到传感光信号p1,而传感光信号p2~p4将会因为传感子像素121_1~121_4处于死亡时间而无法被传感到。
[0051]
因此,在本实施例中,传感子像素121_2~121_4的曝光期间t2~t4的曝光开始时间可分别被依序延后至时间t1~t3,并且曝光期间t1~t4依序的相邻两个曝光期间之间可为部分重叠。如此一来,传感子像素121_2可在曝光期间t2中的时间t1到时间t2之间接收到传感光信号p2。传感子像素121_3可在曝光期间t3中的时间t3到时间t4之间接收到传感光信号p3。传感子像素121_4可在曝光期间t4中的时间t5到时间t6之间接收到传感光信号p4。因此,传感子像素121_2~121_4可有效接收到全部的传感光信号p1~p4,而提供准确的传感结果。
[0052]
综上所述,本发明的光传感器以及测距方法,可依据渐变的延迟时间来延迟光源的多次光发射时间,并且依据光传感器在对应于所述多次光发射时间的传感结果来计算得出具有较高精度的测距结果。并且,本发明的光传感器及其测距方法,还可有效减少传感子
像素的死亡时间的影响,而提供准确的传感结果。
[0053]
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
转载请注明原文地址:https://win.8miu.com/read-1057957.html

最新回复(0)