一种高性能稀土复配型永磁铁氧体材料及其制备方法与流程

专利检索2022-05-11  17



1.本发明属于磁性材料制备技术领域,具体地,涉及一种高性能稀土复配型永磁铁氧体材料及其制备方法。


背景技术:

2.烧结永磁铁氧体具有磁性能稳定,抗退磁能力强;不易锈蚀,无需涂覆保护层;质硬而脆,可用于特殊刀具加工、切割;而且价格低廉,使用成本低等优点,因而被广泛用于汽车、家用电器,工业自动化等行业。
3.中国专利cn109133896a公开了一种永磁铁氧体材料,其化学式为sr
1-x
ca
x
fe
12-y-zyy
zn
z019
,其中0≤x≤0.2,0.1≤y≤0.2,0≤z≤0.1;该发明还公开了一种永磁铁氧体材料的制备方法,其包括配料、一次球磨、预烧、二次球磨、成型、烧结和后处理等步骤。该发明通过对现有锶铁氧体进行氧化钙、氧化钇、氧化锌联合添加,具有离子取代的效果,提高了不含co元素永磁铁氧体的磁性能,但其磁能积(bh)
max
不到4.5mgoe,并且在两次球磨过程中,均未添加分散剂,不能实现各原料的均匀混合,导致其磁性能较差,因此,提供一种高性能稀土复配型永磁铁氧体材料及其制备方法是目前需要解决的技术问题。


技术实现要素:

4.本发明的目的在于提供一种高性能稀土复配型永磁铁氧体材料,以解决上述背景中所提出的问题。
5.本发明的目的可以通过以下技术方案实现:
6.一种高性能稀土复配型永磁铁氧体材料,包括以下重量百分比的原料:fe2o3含量88-90wt%,srco3含量8.0-9.5wt%,co2o3含量0.05-0.2wt%,la2o3含量0.05-0.2wt%,sio2含量0.3-0.5wt%,余量为碳酸钙;
7.进一步地,各原料的平均粒径为1.0-1.5μm;
8.该高性能稀土复配型永磁铁氧体材料由以下步骤制成:
9.第一步、配料:按上述原料组分及含量配料;
10.第二步、一次球磨:将原料混合转移至球磨机中,球磨4-6h,其中原料、钢球和水的质量比为1:15:1.6-1.8,转速70-75r/min,钢球直径6mm;
11.第三步、烘干预烧:将一次球磨后的物料在100-110℃下,干燥4-6h后混合均匀,再于温度1000-1200℃下预烧2-4h,冷却至室温,得到预烧料;
12.第四步、粗粉碎:将预烧料转移至粉碎机中,粉碎成0.8-1.2μm的粗颗粒;
13.第五步、二次球磨:将粗颗粒、水、钢球、添加剂、助剂和分散剂置于球磨机中,用质量分数25%氨水调节ph值为9,转速76-82r/min条件下球磨14-16h,球磨结束后,得到混合料;
14.第六步、磁场成型:将混合料脱水至含水率为35-37%,在12000-14000oe的磁场中成型,成型压力为4.5-5.5mpa,得到胚体;
15.第七步、烧结打磨:将胚体于110-120℃保温1-2h,然后以2℃/min的升温速率升温至1190-1250℃,保温烧结1-2h,冷却至室温后,取出,再对其表面进行打磨,得到高性能稀土复配型永磁铁氧体材料。
16.进一步地,第五步中粗颗粒、钢球和水的质量比为1:15:1.2-1.4,添加剂、助剂和分散剂用量分别为粗颗粒质量的1.2%、0.2-0.4%、0.3-0.6%。
17.进一步地,所述添加剂为caco3、sio2、h2bo3和异丁烯-马来酸酐共聚物按照质量比0.5:0.5:0.8-1.2:0.6混合而成。
18.永磁铁氧体烧结过程中加入硼酸,可以降低气孔率,这是因为硼酸在逐渐升温的过程中加热至100℃时,不断地失去水分,它首先变成偏硼酸hbo2,偏硼酸有3种变体(斜方晶体、单斜晶体和立方晶体)熔点分别为176℃、201℃和236℃,再继续加热,水被脱尽生成氧化硼,晶体氧化硼450℃时熔化,无定型氧化硼没有固定的熔点,它在325℃时开始软化,500℃时全部熔为液体,这时实现了液相烧结,促进试样的收缩,使样品更加致密,减少了气孔率。
19.进一步地,所述分散剂为葡萄糖酸钙、三乙醇氨和山梨糖醇按照质量比1:1:1混合而成。
20.进一步地,所述助剂由以下步骤制成:
21.步骤s1、将γ-氯丙基甲基二甲氧基硅烷、二甲胺、氢化钠和甲苯加入反应釜中,搅拌5min后,升温至110℃,压力0.5mpa下,搅拌反应15-20h,反应结束后,旋蒸去除甲苯,得到中间体1,其中γ-氯丙基甲基二甲氧基硅烷、二甲胺和甲苯的用量比为50mmol:50mmol:28.7-35.6ml;氢化钠的用量为二甲胺质量的3-5%;
22.在拔氢剂氢化钠的作用下,使γ-氯丙基甲基二甲氧基硅烷和二甲胺发生消去hcl的反应,得到中间体1,反应过程如下:
[0023][0024]
步骤s2、将中间体1、1,4-二溴丁烷和异丙醇加入三口烧瓶中,回流反应24h,反应结束后,减压蒸馏去除异丙醇,然后在异丙醇和乙酸乙酯体积比1:1的混合溶剂中重结晶3次,得到中间体2,即改性剂;其中中间体1、1,4-二溴丁烷和异丙醇的用量比为0.1mol:0.05mol:60-80ml;
[0025]
使中间体1和1,4-二溴丁烷在异丙醇溶剂中发生季胺化反应,得到中间体2,即改性剂;反应过程如下:
[0026][0027]
步骤s3、将ca(no3)2·
4h2o、mg(no3)2·
6h2o、al(no3)3·
9h2o和蒸馏水加入三口烧瓶中,搅拌10min后,加入尿素继续搅拌10min,转移至反应釜中,于120℃下反应10-12h,反应结束后,冷却至室温,将反应产物抽滤,滤饼用去离子水洗涤3-5次后,于80℃烘箱中干燥至恒重,再转移至管式炉中,以5℃/min升温速率升温至800℃,恒温焙烧2.5-3h,得到层状
氧化物;其中ca(no3)2·
4h2o、mg(no3)2·
6h2o、al(no3)3·
9h2o、蒸馏水和尿素的用量比为3mmol:3mmol:2mmol:70-100ml:68.2-72.1mmol,以ca(no3)2·
4h2o、mg(no3)2·
6h2o和al(no3)3·
9h2o为钙源、镁源和铝源,在沉淀剂尿素的作用下,水热反应后焙烧处理,得到层状氧化物;
[0028]
步骤s4、将层状氧化物、无水乙醇和去离子水加入三口烧瓶中,频率40-50khz超声分散20min,然后加入中间体2和偶联剂kh-560,转速100-200r/min条件下搅拌反应2-4h后,加入二乙烯三胺,继续搅拌反应2-4h,反应结束后,转速1000-1500r/min条件下离心10-15min,沉淀用蒸馏水洗涤3-5次,再于80℃烘箱中干燥至恒重,得到助剂,其中层状氧化物、无水乙醇、去离子水、中间体2、偶联剂kh-560和二乙烯三胺的用量比为0.2-0.4g:25.8-27.6ml:30-35ml:0.5-0.8g:0.2g:0.2-0.3g;利用中间体2、偶联剂kh-560和二乙烯三胺对层状氧化物进行改性处理,得到助剂。
[0029]
本发明的有益效果:
[0030]
本发明以co2o3和la2o3复配fe2o3,通过一次球磨、烘干预烧、粗粉碎、二次球磨、磁场成型、烧结打磨,得到一种高性能稀土复配型永磁铁氧体材料,其剩余磁感应强度br≥4430gs,磁感矫顽力hcb≥4100oe,内秉矫顽力hcj≥5100oe,磁能积(bh)
max
≥4.80mgoe,本发明在二次球磨过程中加入分散剂、添加剂和助剂,分散剂的加入能够增加粗颗粒在水中的分散均匀度,避免团聚,添加剂为caco3、sio2、h2bo3和异丁烯-马来酸酐共聚物的混合物,能够提高永磁铁氧体材料的致密度,并且通过化学手段合成含有季胺结构和-si-o-链的中间体2,利用中间体2和偶联剂kh-560对钙镁铝层状氧化物进行改性处理,由于环氧基与氨基易发生开环反应,使层状氧化物的表面接枝中间体2和烷基长链得到助剂,其中层状氧化物为水滑石类化合物,具有独特的空间层状结构、良好的热稳定性和较大的比表面积,对二氧化碳具有较好的吸附性,并且季铵基团为co2吸附活性基团,伯胺、仲胺和叔胺均对co2具有吸附特性,将助剂加入二次球磨料中,参与后续烧结过程,能够吸附球磨料中的co2和烧结过程产生的co2,减少co2排出过程中引起永磁铁氧体空隙较多、甚至产生裂纹等问题的发生,并且当加热温度超过600℃时,助剂分解后形成的金属氧化物的混合物开始烧结,表面积降低,孔体积减小,形成含钙尖晶石,一定程度上能够增强永磁铁氧体的力学性能。
具体实施方式
[0031]
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
[0032]
实施例1
[0033]
本实施例提供一种助剂,由以下步骤制成:
[0034]
步骤s1、将50mmolγ-氯丙基甲基二甲氧基硅烷、50mmol二甲胺、氢化钠和28.7ml甲苯加入反应釜中,搅拌5min后,升温至110℃,压力0.5mpa下,搅拌反应15h,反应结束后,旋蒸去除甲苯,得到中间体1,氢化钠的用量为二甲胺质量的3%;
[0035]
步骤s2、将0.1mol中间体1、0.05mol 1,4-二溴丁烷和60ml异丙醇加入三口烧瓶中,回流反应24h,反应结束后,减压蒸馏去除异丙醇,然后在异丙醇和乙酸乙酯体积比1:1
的混合溶剂中重结晶3次,得到中间体2;
[0036]
步骤s3、将3mmol ca(no3)2·
4h2o、3mmol mg(no3)2·
6h2o、2mmol al(no3)3·
9h2o和70ml蒸馏水加入三口烧瓶中,搅拌10min后,加入68.2mmol尿素继续搅拌10min,然后转移至反应釜中,于120℃下反应10h,反应结束后,冷却至室温,将反应产物抽滤,滤饼用去离子水洗涤3次后,于80℃烘箱中干燥至恒重,再转移至管式炉中,以5℃/min升温速率升温至800℃,恒温焙烧2.5h,得到层状氧化物;
[0037]
步骤s4、将0.2g层状氧化物、25.8ml无水乙醇和30ml去离子水加入三口烧瓶中,频率40khz超声分散20min,然后加入0.5g中间体2和0.2g偶联剂kh-560,转速100r/min条件下搅拌反应2h后,加入0.2g二乙烯三胺,继续搅拌反应2h,反应结束后,转速1000r/min条件下离心10min,沉淀用蒸馏水洗涤3次,再于80℃烘箱中干燥至恒重,得到助剂。
[0038]
实施例2
[0039]
本实施例提供一种助剂,由以下步骤制成:
[0040]
步骤s1、将50mmolγ-氯丙基甲基二甲氧基硅烷、50mmol二甲胺、氢化钠和29.5ml甲苯加入反应釜中,搅拌5min后,升温至110℃,压力0.5mpa下,搅拌反应18h,反应结束后,旋蒸去除甲苯,得到中间体1,氢化钠的用量为二甲胺质量的4%;
[0041]
步骤s2、将0.1mol中间体1、0.05mol 1,4-二溴丁烷和70ml异丙醇加入三口烧瓶中,回流反应24h,反应结束后,减压蒸馏去除异丙醇,然后在异丙醇和乙酸乙酯体积比1:1的混合溶剂中重结晶3次,得到中间体2;
[0042]
步骤s3、将3mmol ca(no3)2·
4h2o、3mmol mg(no3)2·
6h2o、2mmol al(no3)3·
9h2o和80ml蒸馏水加入三口烧瓶中,搅拌10min后,加入69.7mmol尿素继续搅拌10min,然后转移至反应釜中,于120℃下反应11h,反应结束后,冷却至室温,将反应产物抽滤,滤饼用去离子水洗涤4次后,于80℃烘箱中干燥至恒重,再转移至管式炉中,以5℃/min升温速率升温至800℃,恒温焙烧2.8h,得到层状氧化物;
[0043]
步骤s4、将0.3g层状氧化物、26.8ml无水乙醇和32ml去离子水加入三口烧瓶中,频率45khz超声分散20min,然后加入0.7g中间体2和0.2g偶联剂kh-560,转速150r/min条件下搅拌反应3h后,加入0.25g二乙烯三胺,继续搅拌反应3h,反应结束后,转速1200r/min条件下离心12min,沉淀用蒸馏水洗涤4次,再于80℃烘箱中干燥至恒重,得到助剂。
[0044]
实施例3
[0045]
本实施例提供一种助剂,由以下步骤制成:
[0046]
步骤s1、将50mmolγ-氯丙基甲基二甲氧基硅烷、50mmol二甲胺、氢化钠和35.6ml甲苯加入反应釜中,搅拌5min后,升温至110℃,压力0.5mpa下,搅拌反应20h,反应结束后,旋蒸去除甲苯,得到中间体1,氢化钠的用量为二甲胺质量的5%;
[0047]
步骤s2、将0.1mol中间体1、0.05mol 1,4-二溴丁烷和80ml异丙醇加入三口烧瓶中,回流反应24h,反应结束后,减压蒸馏去除异丙醇,然后在异丙醇和乙酸乙酯体积比1:1的混合溶剂中重结晶3次,得到中间体2;
[0048]
步骤s3、将3mmol ca(no3)2·
4h2o、3mmol mg(no3)2·
6h2o、2mmol al(no3)3·
9h2o和100ml蒸馏水加入三口烧瓶中,搅拌10min后,加入72.1mmol尿素继续搅拌10min,然后转移至反应釜中,于120℃下反应12h,反应结束后,冷却至室温,将反应产物抽滤,滤饼用去离子水洗涤5次后,于80℃烘箱中干燥至恒重,再转移至管式炉中,以5℃/min升温速率升温至
800℃,恒温焙烧3h,得到层状氧化物;
[0049]
步骤s4、将0.4g层状氧化物、27.6ml无水乙醇和35ml去离子水加入三口烧瓶中,频率50khz超声分散20min,然后加入0.8g中间体2和0.2g偶联剂kh-560,转速200r/min条件下搅拌反应4h后,加入0.3g二乙烯三胺,继续搅拌反应4h,反应结束后,转速1500r/min条件下离心15min,沉淀用蒸馏水洗涤5次,再于80℃烘箱中干燥至恒重,得到助剂。
[0050]
实施例4
[0051]
一种高性能稀土复配型永磁铁氧体材料,包括以下重量百分比的原料:fe2o3含量88wt%,srco3含量9.5wt%,co2o3含量0.2wt%,la2o3含量0.2wt%,sio2含量0.5wt%,余量为碳酸钙;
[0052]
该高性能稀土复配型永磁铁氧体材料由以下步骤制成:
[0053]
第一步、配料:按上述原料组分及含量配料,各原料的平均粒径为1.0μm;
[0054]
第二步、一次球磨:将原料混合转移至球磨机中,球磨4h,其中原料、钢球和水的质量比为1:15:1.6,转速70r/min,钢球直径6mm;
[0055]
第三步、烘干预烧:将一次球磨后的物料在100℃下,干燥4h后混合均匀,再于温度1000℃下预烧2h,冷却至室温,得到预烧料;
[0056]
第四步、粗粉碎:将预烧料转移至粉碎机中,粉碎成0.8μm的粗颗粒;
[0057]
第五步、二次球磨:将粗颗粒、水、钢球、添加剂、实施例1的助剂和分散剂置于球磨机中,用质量分数25%氨水调节ph值为9,转速76r/min条件下球磨14h,球磨结束后,得到混合料;
[0058]
第六步、磁场成型:将混合料脱水至含水率为35%,在12000oe的磁场中成型,成型压力为4.5mpa,得到胚体;
[0059]
第七步、烧结打磨:将胚体于110℃保温1h,然后以2℃/min的升温速率升温至1190℃,保温烧结1h,冷却至室温后,取出,再对其表面进行打磨,得到高性能稀土复配型永磁铁氧体材料。
[0060]
其中,粗颗粒、钢球和水的质量比为1:15:1.2,添加剂、助剂和分散剂用量分别为粗颗粒质量的1.2%、0.2%、0.3%。
[0061]
其中,添加剂为caco3、sio2、h2bo3和异丁烯-马来酸酐共聚物按照质量比0.5:0.5:0.8:0.6混合而成;分散剂为葡萄糖酸钙、三乙醇氨和山梨糖醇按照质量比1:1:1混合而成。
[0062]
实施例5
[0063]
一种高性能稀土复配型永磁铁氧体材料,包括以下重量百分比的原料:fe2o3含量89wt%,srco3含量8.9wt%,co2o3含量0.1wt%,la2o3含量0.1wt%,sio2含量0.4wt%,余量为碳酸钙;
[0064]
该高性能稀土复配型永磁铁氧体材料由以下步骤制成:
[0065]
第一步、配料:按上述原料组分及含量配料,各原料的平均粒径为1.2μm;
[0066]
第二步、一次球磨:将原料混合转移至球磨机中,球磨5h,其中原料、钢球和水的质量比为1:15:1.7,转速72r/min,钢球直径6mm;
[0067]
第三步、烘干预烧:将一次球磨后的物料在105℃下,干燥5h后混合均匀,再于温度1100℃下预烧3h,冷却至室温,得到预烧料;
[0068]
第四步、粗粉碎:将预烧料转移至粉碎机中,粉碎成1μm的粗颗粒;
[0069]
第五步、二次球磨:将粗颗粒、水、钢球、添加剂、实施例2的助剂和分散剂置于球磨机中,用质量分数25%氨水调节ph值为9,转速78r/min条件下球磨15h,球磨结束后,得到混合料;
[0070]
第六步、磁场成型:将混合料脱水至含水率为36%,在13000oe的磁场中成型,成型压力为4.8mpa,得到胚体;
[0071]
第七步、烧结打磨:将胚体于115℃保温1.5h,然后以2℃/min的升温速率升温至1198℃,保温烧结1.5h,冷却至室温后,取出,再对其表面进行打磨,得到高性能稀土复配型永磁铁氧体材料;
[0072]
其中,粗颗粒、钢球和水的质量比为1:15:1.3,添加剂、助剂和分散剂用量分别为粗颗粒质量的1.2%、0.3%、0.5%。
[0073]
其中,添加剂为caco3、sio2、h2bo3和异丁烯-马来酸酐共聚物按照质量比0.5:0.5:1.0:0.6混合而成;分散剂为葡萄糖酸钙、三乙醇氨和山梨糖醇按照质量比1:1:1混合而成。
[0074]
实施例6
[0075]
一种高性能稀土复配型永磁铁氧体材料,包括以下重量百分比的原料:fe2o3含量90wt%,srco3含量8wt%,co2o3含量0.05wt%,la2o3含量0.05wt%,sio2含量0.3wt%,余量为碳酸钙;
[0076]
该高性能稀土复配型永磁铁氧体材料由以下步骤制成:
[0077]
第一步、配料:按上述原料组分及含量配料,各原料的平均粒径为1.5μm;
[0078]
第二步、一次球磨:将原料混合转移至球磨机中,球磨6h,其中原料、钢球和水的质量比为1:15:1.8,转速75r/min,钢球直径6mm;
[0079]
第三步、烘干预烧:将一次球磨后的物料在110℃下,干燥6h后混合均匀,再于温度1200℃下预烧4h,冷却至室温,得到预烧料;
[0080]
第四步、粗粉碎:将预烧料转移至粉碎机中,粉碎成1.2μm的粗颗粒;
[0081]
第五步、二次球磨:将粗颗粒、水、钢球、添加剂、实施例3的助剂和分散剂置于球磨机中,用质量分数25%氨水调节ph值为9,转速82r/min条件下球磨16h,球磨结束后,得到混合料;
[0082]
第六步、磁场成型:将混合料脱水至含水率为37%,在14000oe的磁场中成型,成型压力为5.5mpa,得到胚体;
[0083]
第七步、烧结打磨:将胚体于120℃保温2h,然后以2℃/min的升温速率升温至1250℃,保温烧结2h,冷却至室温后,取出,再对其表面进行打磨,得到高性能稀土复配型永磁铁氧体材料;
[0084]
其中,粗颗粒、钢球和水的质量比为1:15:1.4,添加剂、助剂和分散剂用量分别为粗颗粒质量的1.2%、0.4%、0.6%。
[0085]
其中,添加剂为caco3、sio2、h2bo3和异丁烯-马来酸酐共聚物按照质量比0.5:0.5:1.2:0.6混合而成;分散剂为葡萄糖酸钙、三乙醇氨和山梨糖醇按照质量比1:1:1混合而成。
[0086]
对比例1
[0087]
将实施例4中的添加剂去除,其余原料及制备过程不变。
[0088]
对比例2
[0089]
将实施例5中的助剂去除,其余原料及制备过程不变。
[0090]
对比例3
[0091]
本对比例为东阳市腾诸格电子有限公司出售的永磁铁氧体。
[0092]
将实施例4-6和对比例1-3的永磁铁氧体进行性能测试,测试标准参考gb/t 12796.1-2012,测试结果如表1所示:
[0093]
表1
[0094][0095][0096]
由表1可以看出,实施例4-6的永磁铁氧体在密度、剩磁br、磁感矫顽力hcb、内秉矫顽力hcj、磁能积(bh)
max
测试过程中,测试结果均优于对比例1-3,说明本发明制备的永磁铁氧体具有较高的性能,利用价值更高。
[0097]
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
[0098]
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
转载请注明原文地址:https://win.8miu.com/read-1056185.html

最新回复(0)