一种具有双侧面超结槽栅ldmos器件
技术领域
1.本发明属于半导体技术领域,涉及一种具有双侧面超结槽栅ldmos器件。
背景技术:
2.功率半导体器件作为消费电子、工业控制电路、驱动电路等芯片的核心元器件,是实现节能减排的基石与关键环节。soi技术可通过在器件中引入介质层来实现功率集成电路的介质隔离。相比于体硅技术,soi技术集成度更高、寄生电容极更小和隔离性能更好。soi技术可以提高集成电路的可靠性,在未来制造高集成度、高可靠性、高速度和低功耗芯片的过程中将成为关键性技术,特别是对功率集成电路。基于绝缘体上硅技术的ldmos器件与其他的大多数新型有源器件如hemt、hbt等相比,拥有更好的cmos工艺兼容性以及方便集成的特点,且本身具有高功率、高增益、高线性度、高开关特性,以及有良好的隔离性能、优越的抗辐照能力和可靠性,故受到行业工作者的广泛关注,所以以soi ldmos为对象的研究具有十分特殊的意义。soi ldmos其主要应用于:智能功率集成电路(smart power integrated ciruit,spic)、射频集成电路(radio frequency integrated circuit,rfic)、高压集成电路(high voltage integrated circuit,hvic)。
3.soi横向功率器件的耐压能力由横向击穿电压与纵向击穿电压较小者决定。一般增大器件的横向长度和降低漂移区的掺杂浓度,可以提高器件的横向耐压能力,但同时会导致器件的导通电阻增大,从而使器件的正向导通损耗增大。然而,由于soi器件的埋氧层与顶层硅不能太厚,如果埋氧层与顶层硅的厚度太厚,会导致器件的制造工艺难度增大和器件自热现象加重,以及散热等问题,因此,soi器件的埋氧层与顶层硅不能太厚。当soi器件的埋氧层与顶层硅太薄时,会导致器件的纵向耐压能力降低,是因为埋氧层会阻止器件的耗尽区扩展到衬底,从而使衬底不会进行耐压。该器件的主要矛盾是比导通电阻r
on,sp
与击穿电压bv:r
on,sp
∝
bv
2.5
。降低比导通电阻,同时会导致器件的击穿电压减小;提高器件的击穿电压,同时会使增大器件的比导通电阻。为了更好衡量该器件的综合性能指标,使用baliga优值评价器件的优值fom(figure of merit)已经成为一种很重要的性能指标,即fom=bv2/r
on,sp
。
4.因此,为了解决这一矛盾关系,亟需一种新的ldmos器件。
技术实现要素:
5.有鉴于此,本发明的目的在于提供一种具有双侧面超结槽栅ldmos器件,在保证获得较高的击穿电压情况下,通过使用双侧面超结槽栅和多晶硅辅助耗尽效应,大幅降低器件的比导通电阻r
on,sp
,最终提高了器件的baliga优值fom,从而降低器件的导通损耗。
6.为达到上述目的,本发明提供如下技术方案:
7.一种具有双侧面超结槽栅ldmos器件,主要包括:源极p 区1、源极n 区2、p-body3、漂移区6、漏极n 区7、漏极n-buffer区8、漏极p 区9、p型辅助耗尽区10、槽栅p 接触区11和二氧化硅隔离层12;其中,所述源极p 区1、源极n 区2、p-body3、漂移区6、漏极n-buffer区8
和漏极n 区7从左至右依次排列组成ldmos导电区。槽栅p 接触区11、p型辅助耗尽区10、漏极n-buffer区8、漏极n 区7和漏极p 区9从左至右依次排列组成双侧面超结槽栅区。二氧化硅隔离层12用于分离双侧面超结槽栅区和ldmos导电区,ldmos导电区位于二氧化硅隔离层12内侧,双侧面超结槽栅区位于二氧化硅隔离层12外侧。
8.器件的底部由埋氧层4和衬底5组成;埋氧层4位于双侧面超结槽栅区和ldmos导电区的下侧,同时位于衬底5的上侧。衬底5位于埋氧层4下侧。
9.优选的,所述漂移区6包括左右排列的漂移区ⅰ6-1和漂移区ⅱ6-2;其中漂移区ⅰ6-1掺杂浓度大于漂移区ⅱ6-2的掺杂浓度。
10.优选的,所述p型辅助耗尽区10包括左右排列的p型辅助耗尽区ⅰ10-1、p型辅助耗尽区ⅱ10-2;其中p型辅助耗尽区ⅰ10-1的掺杂浓度小于p型辅助耗尽区ⅱ10-2的掺杂浓度。
11.优选的,所述漂移区6的掺杂类型可以从n型变为p型。
12.优选的,该ldmos器件可以从n型变为p型。
13.优选的,该器件结构适用于横向二极管或ligbt。
14.优选的,二氧化硅隔离层12的厚度可以根据需要改变。
15.优选的,漏极n-buffer区8的掺杂浓度可以根据需要改变。
16.优选的,所述p型辅助耗尽区10的掺杂浓度可以根据需要改变。
17.本发明的有益效果在于:本发明在传统的ldmos器件的基础上,在一漂移区外侧引入双侧面超结槽栅结构,而二氧化硅隔离层将双侧面超结槽栅区和ldmos导电区分离。器件主要由双侧面超结槽栅区与导电区有部分组成,其分别位于器件的外侧和内侧,在正向导通时,双侧面超结槽栅区的槽栅p 接触区上加正电压,此时,双侧面超结槽栅区的多晶硅p型辅助耗尽区与漏极n-buffer区形成反偏的pn结,使器件双侧面超结槽栅区的p型辅助耗尽区上的电压与栅极上的电压几乎完全相同,从而使器件在漂移区中产生一层高浓的电荷积累层,进一步提高漂移区中的导电多数载流子浓度,最终获得了极小的比导通电阻r
on,sp
。在关断时,双侧面超结槽栅区的多晶硅p型辅助耗尽区可以辅助耗尽漂移区,从而优化漂移区的电场分布,最终器件获得较高的击穿电压bv。因此,本发明解决了传统ldmos的比导通电阻和击穿电压之间存在的矛盾关系,并打破了硅极限,极大地提高了器件的baliga优值fom,从而降低了器件的导通损耗。
18.本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
19.为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
20.图1为实施例1的ldmos器件的结构示意图;
21.图2为图1的a、b、c三个不同截面的界面图。
22.图3为实施例2的ldmos器件的结构示意图;
23.图4为实施例3的ldmos器件的结构示意图;
24.图5为实施例1的ldmos器件双侧面超结槽栅区的电势沿着y轴的分布图;
25.图6为实施例1在v
gs
=10v、v
ds
=1v时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件的漂移区沿着y轴方向的电子电流密度分布情况;
26.图7为实施例1在v
gs
=10v、v
ds
=1v和y=6.0μm、x=0.1μm时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件的漂移区的漂移区的电子密度分布情况;
27.图8为实施例1在v
gs
=10v、v
ds
=0v时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件沿a截面处电流密度分布情况;
28.图9为实施例1当vg=10v、vd=1v时,在漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件情况下,两种器件的转移特性曲线和跨导比较图;
29.图10为实施例1的ldmos器件和传统con-sj ldmos器件,以及栅极电压分别别为6v、8v、10v情况下,漏极电压与漏极电流的关系对比图;
30.图11为实施例1的ldmos器件和传统con-sj ldmos器件的比导通电阻随着栅极电压和二氧化硅隔离层厚度变化关系对比图;
31.图12为实施例1的ldmos器件和传统con-sj ldmos器件在雪崩击穿下的电势分布图;
32.图13为实施例1的ldmos器件和传统con-sj ldmos器件在不同电荷补偿作用下的击穿电压与比导通电阻对比关系图;
33.图14为实施例1的ldmos器件的硅极限对比图;
34.图15为实施例1的ldmos器件和传统con-sj ldmos器件开关性能对比图;
35.图16为实施例1的ldmos器件的主要工艺流程示意图;
36.附图标记:1-源极p 区、2-源极n 区、3-p-body、4-埋氧层、5-衬底、6-漂移区、7-漏极n 区、8-漏极n-buffer区、9-漏极p 区、10-p型辅助耗尽区、11-槽栅p 接触区、12-二氧化硅隔离层、6-1-漂移区ⅰ、6-2-漂移区ⅱ、10-1-p型辅助耗尽区ⅰ、10-2-p型辅助耗尽区ⅱ。
具体实施方式
37.以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
38.其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
39.本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
40.实施例1:
41.如图1和图2所示,本实施例设计了一种具有双侧面超结槽栅ldmos器件,主要包括源极p 区1、源极n 区2、p-body3、埋氧层4、衬底5、漂移区6、漏极n 区7、漏极n-buffer区8、漏极p 区9、p型辅助耗尽区10、槽栅p 接触区11和二氧化硅隔离层12。
42.二氧化硅隔离层12将双侧面超结槽栅区和ldmos导电区分离,ldmos导电区位于二氧化硅隔离层12内侧,而双侧面超结槽栅区位于二氧化硅隔离层12外侧。其中,二氧化硅隔离层12的厚度为0.5μm。
43.ldmos导电区主要包括源极p 区1、源极n 区2、p-body3、漂移区6、漏极n-buffer区8、漏极n 区7组成;从左往右源极p 区1、源极n 区2、p-body3、漂移区6、漏极n-buffer区8、漏极n 区7。
44.双侧面超结槽栅区主要由由槽栅p 接触区11、p型辅助耗尽区10、漏极n-buffer区8、漏极n 区7、漏极p 区9组成;从左往右依次是槽栅p 接触区11、p型辅助耗尽区10、漏极n-buffer区8、漏极n 区7、漏极p 区9。
45.器件的底部由埋氧层4和衬底5组成;埋氧层4位于双侧面超结槽栅区和ldmos导电区的下侧,同时位于衬底5的上侧。衬底5位于埋氧层4下侧。
46.实施例2:
47.如图3所示,本实施例设计了一种具有双侧面超结槽栅ldmos器件,主要包括源极p 区1、源极n 区2、p-body3、埋氧层4、衬底5、漏极n 区7、漏极n-buffer区8、漏极p 区9、p型辅助耗尽区10、槽栅p 接触区11和二氧化硅隔离层12、漂移区ⅰ6-1、漂移区ⅱ6-2。
48.在实施例1的结构基础之上,将漂移区6分成漂移区ⅰ6-1和漂移区ⅱ6-2两部分,其中漂移区ⅰ6-1掺杂浓度大于漂移区ⅱ6-2的掺杂浓度。
49.实施例3:
50.如图4所示,本实施例设计了一种具有双侧面超结槽栅ldmos件,主要包括源极p 区1、源极n 区2、p-body3、埋氧层4、衬底5、漂移区6、漏极n 区7、漏极n-buffer区8、漏极p 区9、槽栅p 接触区11和二氧化硅隔离层12、p型辅助耗尽区ⅰ10-1、p型辅助耗尽区ⅱ10-2。
51.在实施例1的结构基础之上,将原有的p型辅助耗尽区10分成p型辅助耗尽区ⅰ10-1和p型辅助耗尽区ⅱ10-2两部分,其中p型辅助耗尽区ⅰ10-1的掺杂浓度小于p型辅助耗尽区ⅱ10-2的掺杂浓度。
52.图5为实施例1的ldmos器件双侧面超结槽栅区的电势沿着y轴的分布图。从图中5中可知槽栅p 接触区和p型辅助耗尽区电势基本相等,特别p型辅助耗尽区的电势等于10v,这使得器件开启时能够在器件的漂移区中积累大量电子,从而提高导电载流子浓度,最终降低器件比导通电阻。
53.图6为本发明实施例1在v
gs
=10v、v
ds
=1v时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的
con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件的漂移区沿着y轴方向的电子电流密度分布情况。从图6中可以看出新结构ldmos器件靠近化物隔离层内侧的漂移区电子密度为5.0
×
10
18
cm-3
,con-sj ldmos的漂移区电子密度为4.0
×
10
16
cm-3
,因此,新结构ldmos器件漂移区的电子浓度远大于con-sj ldmos的漂移区电子密度。
54.图7为本发明实施例1在v
gs
=10v、v
ds
=1v和y=6.0μm、x=0.1μm时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件的漂移区的漂移区的电子密度分布情况。从图7可知,新结构ldmos器件漂移区的电子密度远大于con-sj ldmos的漂移区电子密度。
55.图8为本发明实施例1在v
gs
=10v、v
ds
=0v时,漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件沿a截面处电流密度分布情况。如图8所示,新结构ldmos器件漂移区的电子电流密度远大于con-sj ldmos的漂移区的电子电流密度。
56.图9为本发明实施例1当vg=10v、vd=1v时,在漂移区掺杂浓度为4.0
×
10
16
cm-3
的con-sj ldmos和漂移区掺杂浓度为4.0
×
10
16
cm-3
的新结构ldmos器件情况下,两种器件的转移特性曲线和跨导比较图。根据图9可知,新结构ldmos的漏极电流i
ds
和跨导最大值gm远大于con-sj ldmos。
57.图10为本发明实施例1提供的新结构ldmos器件和传统con-sj ldmos器件,以及栅极电压分别别为6v、8v、10v情况下,漏极电压与漏极电流的关系对比图。如图10所示,新结构ldmos器件的漏极电流i
ds
均大于con-sj ldmos,因此,新结构ldmos器件的正向导通性能比con-sj ldmos更好。
58.图11为本发明实施例1提供的新结构ldmos器件和传统con-sj ldmos器件的比导通电阻随着栅极电压和二氧化硅隔离层厚度变化关系对比图。从图11可知,新结构ldmos器件的比导通电阻r
on,sp
远小于传统con-sj ldmos器件;此外,新结构ldmos器件的比导通电阻r
on,sp
随着二氧化硅隔离层厚度减小而减小。
59.图12为本发明实施例1提供的新结构ldmos器件和传统con-sj ldmos器件在雪崩击穿下的电势分布图。如图12所示,虽然新结构ldmos器件的击穿电压略小于传统con-sj ldmos器件,但是两种器件的电势分布基本相同。
60.图13为本发明实施例1提供的新结构ldmos器件和传统con-sj ldmos器件在不同电荷补偿作用下的击穿电压与比导通电阻对比关系图。从图13中可知,两种器件的击穿电压bv随着qn/q
p
先增大后减小,当qn/q
p
为1时,两种器件的击穿电压bv达到最大值。此外,新结构ldmos器件的比导通电阻r
on,sp
几何保持不变,传统con-sj ldmos器件的比导通电阻r
on,sp
随着qn/q
p
比值增大而不断减小。
61.图14为本发明实施例1提供的新结构ldmos器件的硅极限对比图。从图中14中可以看出,新结构ldmos器件成功打破了resurf硅极限,是因为新结构ldmos器件很好地解决了传统ldmos器件存在的硅极限矛盾关系。在相同的耐压情况下,新结构ldmos器件具有更小的比导通电阻,这表明新结构ldmos器件具有更好的击穿电压与比导通之间的折中关系。
62.图15为本发明实施例1提供的新结构ldmos器件和传统con-sj ldmos器件开关性能对比图。从图15中可知,新结构ldmos器件的开关性能比传统con-sj ldmos器件要差一点,是因为新结构ldmos器件具有更大的米勒电容。
63.本发明实施例1提出的具有双侧面超结槽栅ldmos器件,以示意图1为例,其主要工艺流程如图16所示。其主要工艺包括:离子注入、扩散、刻蚀、氧化、淀积、多晶填充和退火等工艺形成双侧面超结槽栅区、ldmos导电区、二氧化硅隔离层。最后,淀积金属电极形成源极、栅极、漏极。
64.最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
转载请注明原文地址:https://win.8miu.com/read-1056161.html